Skip to main content
Log in

Position and velocity perturbations for the determination of geopotential from space geodetic measurements

  • Original Article
  • Published:
Celestial Mechanics and Dynamical Astronomy Aims and scope Submit manuscript

Abstract

Although space geodetic observing systems have been advanced recently to such a revolutionary level that low Earth Orbiting (LEO) satellites can now be tracked almost continuously and at the unprecedented high accuracy, none of the three basic methods for mapping the Earth’s gravity field, namely, Kaula linear perturbation, the numerical integration method and the orbit energy-based method, could meet the demand of these challenging data. Some theoretical effort has been made in order to establish comparable mathematical modellings for these measurements, notably by Mayer-Gürr et al. (J Geod 78:462–480, 2005). Although the numerical integration method has been routinely used to produce models of the Earth’s gravity field, for example, from recent satellite gravity missions CHAMP and GRACE, the modelling error of the method increases with the increase of the length of an arc. In order to best exploit the almost continuity and unprecedented high accuracy provided by modern space observing technology for the determination of the Earth’s gravity field, we propose using measured orbits as approximate values and derive the corresponding coordinate and velocity perturbations. The perturbations derived are quasi-linear, linear and of second-order approximation. Unlike conventional perturbation techniques which are only valid in the vicinity of reference mean values, our coordinate and velocity perturbations are mathematically valid uniformly through a whole orbital arc of any length. In particular, the derived coordinate and velocity perturbations are free of singularity due to the critical inclination and resonance inherent in the solution of artificial satellite motion by using various types of orbital elements. We then transform the coordinate and velocity perturbations into those of the six Keplerian orbital elements. For completeness, we also briefly outline how to use the derived coordinate and velocity perturbations to establish observation equations of space geodetic measurements for the determination of geopotential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bender, P.L., Hall, J.L., Ye, J., Klipstein, W.M.: Satellite-satellite laser links for future gravity missions. Space Sci. Rev. 108, 377–384 (2003)

    Article  ADS  Google Scholar 

  • Breiter, S., Elipe, A.: Critical inclination in the main problem of a massive satellite. Celest. Mech. Dyn. Astron. 95, 287–297 (2006)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • Brouwer, D.: Integration of the equations of general planetary theory in rectangular coordinates. Astron. J. 51, 37–43 (1944)

    Article  ADS  MathSciNet  Google Scholar 

  • Brouwer, D.: Solution of the problem of artificial satellite theory without drag. Astron. J. 64, 378–397 (1959)

    Article  ADS  MathSciNet  Google Scholar 

  • Brouwer, D., Clemence, G.M.: Methods of Celestial Mechanics. Academic Press, New York (1961)

    Google Scholar 

  • Brumberg, V.A.: Perturbation theory in rectangular coordinates. Celest. Mech. 18, 319–336 (1978)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Casotto, S.: Position and velocity perturbations in the orbital frame in terms of classical element perturbations. Celest. Mech. Dyn. Astron. 55, 209–221 (1993)

    Article  ADS  MATH  Google Scholar 

  • Cheng, M.K.: Gravitational perturbation theory for intersatellite tracking. J. Geod. 76, 169–185 (2002)

    Article  MATH  ADS  Google Scholar 

  • Coffey, S.L., Deprit, A., Miller, B.R.: The critical inclination in artificial satellite theory. Celest. Mech. 39, 365–406 (1986)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • Cook, A.H.: The contribution of observations of satellites to the determination of the Earth’s gravitational potential. Space Sci. Rev. 2, 355–437 (1963)

    Article  ADS  Google Scholar 

  • Cui, Ch., Lelgemann, D.: On non-linear low-low SST observation equations for the determination of the geopotential based on an analytical solution. J. Geod. 74, 431–440 (2000)

    Article  MATH  ADS  Google Scholar 

  • de Boor, C.: A Practical Guide to Splines. Springer, Berlin (2001)

    MATH  Google Scholar 

  • Deleflie, F., Métris, G., Exertier, P.: An analytical solution of the Lagrange equations valid also for very low eccentricities: influence of a central potentia. Celest. Mech. Dyn. Astron. 94, 105–134 (2006)

    Article  MATH  ADS  Google Scholar 

  • De Saedeleer, B.: Analytical theory of a lunar artificial satellite with third body perturbations. Celest. Mech. Dyn. Astron. 95, 407–423 (2006)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • Douglas, B.C., Goad, C.C., Morrison, F.F.: Determination of the geopotential from satellite-to-satellite tracking data. J. Geophys. Res. B85, 5471–5480 (1980)

    Article  ADS  Google Scholar 

  • ESA: Gravity field and steady-state ocean circulation explorer mission working group. ESA Publication Division (1996)

  • ESA SP-1233(1): Gravity field and steady-state ocean circulation mission. ESA Reports for Mission Selection (1999)

  • Fengler, M.J., Freeden, W., Michel, V.: The Kaiserslautern multiscale geopotential model SWITCH-03 from orbit perturbations of the satellite CHAMP and its comparison to the models EGM96, UCPH2002_02_0.5, EIGEN-1s and EIGEN-2. Geophys. J. Int. 157, 499–514 (2004)

    Article  ADS  Google Scholar 

  • Gooding, R.H.: Complete second-order satellite perturbations due to J 2 and J 3, compactly expressed in spherical-polar coordinates. Acta Astronaut. 10, 309–317 (1983)

    Article  MATH  Google Scholar 

  • Groves, G.V.: Motion of a satellite in the Earth’s gravitational field. Proc. Roy. Soc. Lond. A254, 48–65 (1960)

    ADS  MathSciNet  Google Scholar 

  • Guier, W.H.: Determination of the non-zonal harmonics of the geopotential from satellite Doppler data. Nature 200, 124–125 (1963)

    Article  MATH  ADS  Google Scholar 

  • Hackbusch, W.: Integral Equations – Theory and Numerical Treatment. Birkhäuser, Berlin (1995)

    MATH  Google Scholar 

  • Han, S.-C.: Efficient determination of global gravity field from satellite-to-satellite tracking mission. Celest. Mech. Dyn. Astron. 88, 69–102 (2004)

    Article  ADS  Google Scholar 

  • Heiskanen, W.A., Moritz, H.: Physical Geodesy. W.H. Freeman Publ. Co., San Francisco (1967)

    Google Scholar 

  • Ilk, K.H.: Ein Beitrag zur Dynamik ausgedehnter Körper—Gravitationswechselwirkung. Deutsche Geodätische Kommission, C288, München (1983)

  • Ilk, K.H.: On the regional mapping of gravitation with two satellites. In: Proc. I Hotine-Marussi Symp. Math. Geod., pp. 807–831 (1986)

  • Ilk, K.H., Feuchtinger, M., Mayer-Gürr, T.: Gravity field recovery and validation by analysis of short arcs of a satellite-to-satellite tracking experiment as CHAMP and GRACE. In: , (eds) A Window on the Future of Geodesy, pp. 189–194. Springer, Berlin (2005)

    Chapter  Google Scholar 

  • Ilk, K.H., Löcher, A., Mayer-Gürr, T.: Do we need new gravity field recovery techniques for the new gravity field satellites?. In: Xu, P.L., Liu, J.N., Dermanis, A.(eds) VI Hotine-Marussi Symp. Theor. Comput. Geodesy., pp. 3–8. Springer, Berlin (2008)

    Chapter  Google Scholar 

  • Izsak, I.G.: Tesseral harmonics in the geopotential. Nature 199, 137–139 (1963)

    Article  ADS  Google Scholar 

  • Jekeli, C.: The determination of gravitational potential differences from satellite-to-satellite tracking. Celest. Mech. Dyn. Astron. 75, 85–101 (1999)

    Article  MATH  ADS  Google Scholar 

  • Jekeli, C., Upadhyay, T.N.: Gravity estimation from STAGE, a satellite-to-satellite tracking mission. J. geophys. Res. B95, 10973–10985 (1990)

    Article  ADS  Google Scholar 

  • Jupp, A.H.: The critical inclination problem – 30 years of progress. Celest. Mech. 43, 127–138 (1988)

    MATH  ADS  Google Scholar 

  • Kaula, W.M.: Analysis of gravitational and geometric aspects of geodetic utilization of satellites. Geophys. J. R. Astr. Soc. 5, 104–133 (1961a)

    MATH  Google Scholar 

  • Kaula, W.M.: A geoid and world geodetic system based on a combination of gravimetric, astrogeodetic and satellite data. J. Geophys. Res. B66, 1799–1811 (1961b)

    Article  ADS  Google Scholar 

  • Kaula, W.M.: Theory of Satellite Geodesy. Blaisdell Publishing Company, London (1966)

    Google Scholar 

  • Kim, J.: Simulation study of a low-low satellite-to-satellite tracking missions. PhD Dissertation, The University of Texas at Austin (2000)

  • Kondo, J.: Integral Equations. Clarendon Press, Oxford (1991)

    MATH  Google Scholar 

  • Koop, R.: Global gravity field modelling using satellite gravity gradiometry. Netherlands Geodetic Commission, Publ. Geod. New Series No. 38, Delft (1993)

  • Kozai, Y.: The motion of a close Earth satellite. Astron. J. 64, 367–377 (1959)

    Article  ADS  MathSciNet  Google Scholar 

  • Kozai, Y.: Second-order solution of artificial satellite theory without air drag. Astron. J. 67, 446–461 (1962)

    Article  ADS  MathSciNet  Google Scholar 

  • Kozai, Y.: The Earth gravitational potential derived from satellite motion. Space Sci. Rev. 5, 818–879 (1966)

    Article  ADS  Google Scholar 

  • Kudryavtsev, S.M.: The fifth-order analytical solution of the equations of motion of a satellite in orbit around a non-spherical planet. Celest. Mech. Dyn. Astron. 61, 207–215 (1995)

    Article  MATH  ADS  Google Scholar 

  • Liu, X.-L., Ditmar, P.: Smoothing a satellite orbit on the basis of B-spline and regularization. Chinese J. Geophys. 49, 86–94 (2006)

    Google Scholar 

  • Mayer-Gürr, T., Ilk, K.H., Eicker, A., Feuchtinger, M.: ITG-CHAMP01: a CHAMP gravity field model from short kinematic arcs over a one-year observation period. J. Geod. 78, 462–480 (2005)

    Article  MATH  ADS  Google Scholar 

  • Merson, R.H., King-Hele, D.G.: Use of artificial satellites to explore the Earth’s gravitational field: Results from SPUTNIK 2 (1957β). Nature 182, 640–641 (1958)

    Article  ADS  Google Scholar 

  • Peláez, J., Hedo, J.M., Rodríguezde Andrés, P.: A special perturbation method in orbital dynamics. Celest. Mech. Dyn. Astron. 97, 131–150 (2007)

    Article  MATH  ADS  Google Scholar 

  • Prussing, J.E., Conway, B.A.: Orbital Mechanics. Oxford University Press, Oxford (1993)

    MATH  Google Scholar 

  • Reigber, C., Balmino, G., Schwintzer, P., Biancale, R., Bode, A., Lemoine, J.-M., König, R., Loyer, S., Neumayer, K.-H., Marty, J.-C., Barthelmes, F., Perosanz, F., Zhu, S.Y.: Global gravity field recovery using solely GPS tracking and accelerometer data from CHAMP. Space Sci. Rev. 108, 55–66 (2003)

    Article  ADS  Google Scholar 

  • Reubelt, T., Austen, G., Grafarend, E.: Harmonic analysis of the Earth’s gravitational field by means of semi-continuous ephemerides of a low Earth orbiting GPS-tracked satellite. Case study: CHAMP. J. Geod. 77, 257–278 (2003)

    Article  MATH  ADS  Google Scholar 

  • Rosborough, G.W., Tapley, B.D.: Radial, transverse and normal satellite position perturbations due to the geopotential. Celest. Mech. 40, 409–421 (1987)

    Article  MATH  ADS  Google Scholar 

  • Rowlands, D.D., Ray, R.D., Chinn, D.S., Lemoine, F.G.: Short-arc analysis of intersatellite tracking data in a gravity mapping mission. J. Geod. 76, 307–316 (2002)

    Article  ADS  Google Scholar 

  • Rummel, R.: Geoid and gravity in Earth sciences – an overview. Earth Moon Planet 94, 3–11 (2004)

    Article  MATH  ADS  Google Scholar 

  • Rummel, R., Balmino, G., Johannessen, J., Visser, P., Woodworth, P.: Dedicated gravity field missions – principles and aims. J. Geodyn. 33, 3–20 (2002)

    Article  Google Scholar 

  • Schneider, M.: A general method of orbit determination, Report 1279. Royal Aircraft Establishment, Hants, UK (1968)

    Google Scholar 

  • Schneider, M.: Observation equations based on expansions into eigenfunctions. Manuscr. Geod. 9, 169–208 (1984)

    MATH  Google Scholar 

  • Seeber, G.: Satellite Geodesy, 2nd edn. Walter de Gruyter, Berlin (2003)

    Google Scholar 

  • Švehla, D., Rothacher, M.: Kinematic positioning of LEO and GPS satellites and IGS stations on the ground. Adv. Space Res. 36, 376–381 (2005)

    Article  ADS  Google Scholar 

  • Taff, L.G.: Celestial Mechanics: A Computational Guide for the Practitioners. Wiley-Interscience, New York (1985)

    Google Scholar 

  • Tapley,B.D., Bettadpur, S., Watkins, M., Reigber, C.: The gravity recovery and climate experiment: mission overview and early results. Geophys. Res. Lett. 31, L09607 (2004). doi: 10.1029/2004GL019920

  • Wolff, M.: Direct measurements of the Earth’s gravitational potential using a satellite pair. J. Geophys. Res. 74, 5295–5300 (1969)

    Article  ADS  Google Scholar 

  • Wnuk, E.: Recent progress in analytical orbit theories. Adv. Space Res. 23, 677–687 (1999)

    Article  ADS  Google Scholar 

  • Xu, P.L., Fukuda, Y., Liu, Y.M.: Multiple parameter regularization: numerical solutions and applications to the determination of geopotential from precise satellite orbits. J. Geod. 80, 17–27 (2006a)

    Article  ADS  Google Scholar 

  • Xu, P.L., Shen, Y.Z., Fukuda, Y., Liu, Y.M.: Variance component estimation in linear inverse ill-posed models. J. Geod. 80, 69–81 (2006b)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peiliang Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, P. Position and velocity perturbations for the determination of geopotential from space geodetic measurements. Celestial Mech Dyn Astr 100, 231–249 (2008). https://doi.org/10.1007/s10569-008-9117-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10569-008-9117-x

Keywords

Navigation