Skip to main content
Log in

A note on lower bounds for relative equilibria in the main problem of artificial satellite theory

  • Original Article
  • Published:
Celestial Mechanics and Dynamical Astronomy Aims and scope Submit manuscript

Abstract

In the analytical approach to the main problem in satellite theory, the consideration of the physical parameters imposes a lower bound for normalized Hamiltonian. We show that there is no elliptic frozen orbits, at critical inclination, when we consider small values of H, the third component of the angular momentum. The argument used suggests that it might be applied also to more realistic zonal and tesseral models. Moreover, for almost polar orbits, when H may be taken as another small parameter, a different approach that will simplify the ephemerides generators is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Broucke R. (1994). Numerical integration of periodic orbits in the main problem of artificial satellite. Celest. Mech. Dyn. Astr. 58: 99–123

    Article  ADS  MathSciNet  Google Scholar 

  • Brouwer D. (1959). Solution of the problem of artificial satellite theory without drag. Astron. J. 64: 378–397

    Article  ADS  MathSciNet  Google Scholar 

  • Chang D.E. and Marsden J. (2003). Geometric derivation of the Delaunay variables and geometric phases. Celest. Mech. Dyn. Astr. 86: 185–208

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • Coffey S.L. and Deprit A. (1982). Third-order solution to the main problem in satellite theory. J. Guidance Control Dyn. 5: 366–371

    Article  MATH  MathSciNet  Google Scholar 

  • Coffey S.L., Deprit A. and Miller B.R. (1986a). The nature of the critical inclinations in artificial satellite theory. In: Bathnagar, K.B. (eds) Space Dynamics and Celestial Mechanics. ASSL, vol. 127, pp 39–54. Reidel, Dordrecht

    Google Scholar 

  • Coffey S.L., Deprit A. and Miller B.R. (1986b). The critical inclination in artificial satellite theory. Celest. Mech. 39: 365–406

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • Coffey S.L., Deprit A. and Deprit E. (1994). Frozen orbits for satellites close to an Earth-like planet. Celest. Mech. Dyn. Astr. 59: 37–72

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • Cushman, R.: Reduction, Brouwer’s Hamiltonian, and the critical inclination. Celest. Mech. 31, 401–429 (1983); Errata Celest. Mech. 33, 297 (1984)

    Google Scholar 

  • Cushman R. (1988). An analysis of the critical inclination problem using singularity theory. Celest. Mech. 42: 39–51

    ADS  MathSciNet  Google Scholar 

  • Cushman R. (1991). A survey of normalization techniques applied to perturbed Keplerian systems. In: Jones, C.K. (eds) Dynamics Reported. Expositions in Dynamical Systems, pp 54–112. Springer-Verlag, Berlin

    Google Scholar 

  • Delaunay, C.: Théorie du mouvement de la lune. Acad. Sci. France, Paris. Mem. 28 (1860); 29 (1867)

  • Deprit A. (1981). The elimination of the parallax in satellite theory. Celest. Mech. 24: 111–153

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • Deprit A. (1985). Transactions of the IAU, vol. XIXB. Reidel, Dordrecht, 105

    Google Scholar 

  • Ferrer, S., San-Juan, J.F., Abad, A.: A compact ephemerides generator for almost polar orbits. In preparation (2007)

  • Healy L.M. (2000). The main problem in satellite theory revisited. Celest. Mech. Dyn. Astr. 76: 79–120

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • Hori G. (1973). Theory of general perturbations. In: Tapley, B.D. and Szebehely, V. (eds) Recent Advances in Dynamical Astronomy, pp 231–249. Reidel, Dordrecht

    Google Scholar 

  • Hori G. and Kozai Y. (1975). Analytical theories of the motion of artificial satellites. In: Giacaglia, G.E.O. (eds) Satellite Dynamics, pp 1–15. Springer-Verlag, Berlin

    Google Scholar 

  • Hough M.E. (1981a). Orbits near critical inclination, including lunisolar perturbations. Celest. Mech. 25: 111–136

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • Hough M.E. (1981b). Sun-Synchronous orbits near critical inclination. Celest. Mech. 25: 137–157

    Article  MATH  ADS  Google Scholar 

  • Lara M. (1997). On periodic polar orbits in the artificial satellite problem. J. Astron. Sci. 45(3): 321–328

    MathSciNet  Google Scholar 

  • Peters C.F. (1970). Motion of space probe near an oblate planet. In: Giacaglia, G.E.O. (eds) Periodic Orbits, Stability and Resonances, pp 469–473. Reidel, Dordrecht

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto Abad.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ferrer, S., San-Juan, J.F. & Abad, A. A note on lower bounds for relative equilibria in the main problem of artificial satellite theory. Celestial Mech Dyn Astr 99, 69–83 (2007). https://doi.org/10.1007/s10569-007-9091-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10569-007-9091-8

Keywords

Navigation