Skip to main content
Log in

Silica nanoparticles induce ovarian granulosa cell apoptosis via activation of the PERK-ATF4-CHOP-ERO1α pathway-mediated IP3R1-dependent calcium mobilization

  • Research
  • Published:
Cell Biology and Toxicology Aims and scope Submit manuscript

Abstract

Ambient particulate matters (PMs) have adverse effects in human and animal female reproductive health. Silica nanoparticles (SNPs), as a major component of PMs, can induce follicular atresia via the promotion of ovarian granulosa cell apoptosis. However, the molecular mechanisms of apoptosis induced by SNPs are not very clear. This work focuses on revealing the mechanisms of ER stress on SNP-induced apoptosis. Our results showed that spherical Stöber SNPs (110 nm, 25.0 mg/kg b.w.) induced follicular atresia via the promotion of granulosa cell apoptosis by intratracheal instillation in vivo; meanwhile, SNPs decreased the viability and increase apoptosis in granulosa cells in vitro. SNPs were taken up and accumulated in the vesicles of granulosa cells. Additionally, our results found that SNPs increased calcium ion (Ca2+) concentration in granulosa cell cytoplasm. Furthermore, SNPs activated ER stress via an increase in the PERK and ATF6 pathway-related protein levels and IP3R1-dependent calcium mobilization via an increase in IP3R1 level. In addition, 4-PBA restored IP3R1-dependent calcium mobilization and decreased apoptosis via the inhibition of ER stress. The ATF4-C/EBP homologous protein (CHOP)-ER oxidoreductase 1 alpha (ERO1α) pathway regulated SNP-induced IP3R1-dependent calcium mobilization and cell apoptosis via ATF4, CHOP, and ERO1α depletion in ovarian granulosa cells. Herein, we demonstrate that ER stress cooperated in SNP-induced ovarian toxicity via activation of IP3R1-mediated calcium mobilization, leading to apoptosis, in which the PERK-ATF4-CHOP-ERO1α pathway plays an essential role in ovarian granulosa cells.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The datasets used and/or analyzed during this study are available from the corresponding authors on reasonable request.

References

  • Anelli T, Alessio M, Mezghrani A, Simmen T, Talamo F, Bachi A, et al. ERp44, a novel endoplasmic reticulum folding assistant of the thioredoxin family. EMBO J. 2002;21:835–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Averous J, Bruhat A, Jousse C, Carraro V, Thiel G, Fafournoux P. Induction of CHOP expression by amino acid limitation requires both ATF4 expression and ATF2 phosphorylation. J Biol Chem. 2004;279:5288–97.

    Article  CAS  PubMed  Google Scholar 

  • Bitar A, Ahmad NM, Fessi H, Elaissari A. Silica-based nanoparticles for biomedical applications. Drug Discov Today. 2012;17:1147–54.

    Article  CAS  PubMed  Google Scholar 

  • Che L, Yao H, Yang CL, Guo NJ, Huang J, Wu ZL, et al. Cyclooxygenase-2 modulates ER-mitochondria crosstalk to mediate superparamagnetic iron oxide nanoparticles induced hepatotoxicity: an in vitro and in vivo study. Nanotoxicology. 2020;14:162–80.

    Article  CAS  PubMed  Google Scholar 

  • Chen F, Jin J, Hu J, Wang Y, Ma Z, Zhang J. Endoplasmic reticulum stress cooperates in silica nanoparticles-induced macrophage apoptosis via activation of CHOP-mediated apoptotic signaling pathway. Int J Mol Sci. 2019;20:5846.

  • Chen F, Lin PF, Li X, Sun J, Zhang Z, Du E, et al. Construction and expression of lentiviral vectors encoding recombinant mouse CREBZF in NIH 3T3 cells. Plasmid. 2014;76:24–31.

    Article  CAS  PubMed  Google Scholar 

  • Chen F, Wang Y, Liu Q, Hu J, Jin J, Ma Z, et al. ERO1alpha promotes testosterone secretion in hCG-stimulated mouse Leydig cells via activation of the PI3K/AKT/mTOR signaling pathway. J Cell Physiol. 2020;235:5666–78.

    Article  CAS  PubMed  Google Scholar 

  • Chen F, Wen X, Lin P, Chen H, Wang A, Jin Y. Activation of CREBZF increases cell apoptosis in mouse ovarian granulosa cells by regulating the ERK1/2 and mTOR signaling pathways. Int J Mol Sci. 2018;19:3517.

  • Christen V, Camenzind M, Fent K. Silica nanoparticles induce endoplasmic reticulum stress response, oxidative stress and activate the mitogen-activated protein kinase (MAPK) signaling pathway. Toxicol Rep. 2014;1:1143–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Christen V, Fent K. Silica nanoparticles and silver-doped silica nanoparticles induce endoplasmatic reticulum stress response and alter cytochrome P4501A activity. Chemosphere. 2012;87:423–34.

    Article  CAS  PubMed  Google Scholar 

  • Christen V, Fent K. Silica nanoparticles induce endoplasmic reticulum stress response and activate mitogen activated kinase (MAPK) signalling. Toxicol Rep. 2016;3:832–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dumesic DA, Meldrum DR, Katz-Jaffe MG, Krisher RL, Schoolcraft WB. Oocyte environment: follicular fluid and cumulus cells are critical for oocyte health. Fertil Steril. 2015;103:303–16.

    Article  PubMed  Google Scholar 

  • Estaquier J, Vallette F, Vayssiere JL, Mignotte B. The mitochondrial pathways of apoptosis. Adv Exp Med Biol. 2012;942:157–83.

    Article  CAS  PubMed  Google Scholar 

  • Fruijtier-Polloth C. The toxicological mode of action and the safety of synthetic amorphous silica-a nanostructured material. Toxicology. 2012;294:61–79.

    Article  PubMed  Google Scholar 

  • Gai HF, An JX, Qian XY, Wei YJ, Williams JP, Gao GL. Ovarian damages produced by aerosolized fine particulate matter (PM2.5) pollution in mice: possible protective medications and mechanisms. Chin Med J (Engl). 2017;130:1400–10.

    Article  CAS  PubMed  Google Scholar 

  • Goshua A, Akdis C, Nadeau KC. World Health Organization global air quality guideline recommendations: executive summary. Allergy. 2022;77:1955–1960.

  • Guo C, Ma R, Liu X, Chen T, Li Y, Yu Y, et al. Silica nanoparticles promote oxLDL-induced macrophage lipid accumulation and apoptosis via endoplasmic reticulum stress signaling. Sci Total Environ. 2018a;631–632:570–9.

    Article  PubMed  Google Scholar 

  • Guo C, Ma R, Liu X, Xia Y, Niu P, Ma J, et al. Silica nanoparticles induced endothelial apoptosis via endoplasmic reticulum stress-mitochondrial apoptotic signaling pathway. Chemosphere. 2018b;210:183–92.

    Article  CAS  PubMed  Google Scholar 

  • Han J, Back SH, Hur J, Lin YH, Gildersleeve R, Shan J, et al. ER-stress-induced transcriptional regulation increases protein synthesis leading to cell death. Nat Cell Biol. 2013;15:481–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harding HP, Novoa I, Zhang Y, Zeng H, Wek R, Schapira M, et al. Regulated translation initiation controls stress-induced gene expression in mammalian cells. Mol Cell. 2000;6:1099–108.

    Article  CAS  PubMed  Google Scholar 

  • Higo T, Hattori M, Nakamura T, Natsume T, Michikawa T, Mikoshiba K. Subtype-specific and ER lumenal environment-dependent regulation of inositol 1,4,5-trisphosphate receptor type 1 by ERp44. Cell. 2005;120:85–98.

    Article  CAS  PubMed  Google Scholar 

  • Hu J, Jin J, Qu Y, Liu W, Ma Z, Zhang J, et al. ERO1alpha inhibits cell apoptosis and regulates steroidogenesis in mouse granulosa cells. Mol Cell Endocrinol. 2020;511:110842.

    Article  CAS  PubMed  Google Scholar 

  • Kang S, Kang J, Kwon H, Frueh D, Yoo SH, Wagner G, et al. Effects of redox potential and Ca2+ on the inositol 1,4,5-trisphosphate receptor L3–1 loop region: implications for receptor regulation. J Biol Chem. 2008;283:25567–75.

    Article  CAS  PubMed  Google Scholar 

  • Korsmeyer SJ, Shutter JR, Veis DJ, Merry DE, Oltvai ZN. Bcl-2/Bax: a rheostat that regulates an anti-oxidant pathway and cell death. Semin Cancer Biol. 1993;4:327–32.

    CAS  PubMed  Google Scholar 

  • Lee K, Lee J, Kwak M, Cho YL, Hwang B, Cho MJ, et al. Two distinct cellular pathways leading to endothelial cell cytotoxicity by silica nanoparticle size. J Nanobiotechnology. 2019;17:24.

    Article  PubMed  PubMed Central  Google Scholar 

  • Li G, Mongillo M, Chin KT, Harding H, Ron D, Marks AR, et al. Role of ERO1-alpha-mediated stimulation of inositol 1,4,5-triphosphate receptor activity in endoplasmic reticulum stress-induced apoptosis. J Cell Biol. 2009;186:783–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li L, Cui J, Liu Z, Zhou X, Li Z, Yu Y, et al. Silver nanoparticles induce SH-SY5Y cell apoptosis via endoplasmic reticulum- and mitochondrial pathways that lengthen endoplasmic reticulum-mitochondria contact sites and alter inositol-3-phosphate receptor function. Toxicol Lett. 2018;285:156–67.

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Yang M, Jing L, Ren L, Wei J, Zhang J, et al. Silica nanoparticle exposure inducing granulosa cell apoptosis and follicular atresia in female Balb/c mice. Environ Sci Pollut Res Int. 2018;25:3423–34.

    Article  CAS  PubMed  Google Scholar 

  • Liu P, Zhao Y, Wang S, Xing H, Dong WF. Effect of combined exposure to silica nanoparticles and cadmium chloride on female zebrafish ovaries. Environ Toxicol Pharmacol. 2021;87:103720.

    Article  CAS  PubMed  Google Scholar 

  • Matassoni L, Pratesi G, Centioli D, Cadoni F, Lucarelli F, Nava S, et al. Saharan dust contribution to PM(1)(0), PM(2). (5) and PM(1) in urban and suburban areas of Rome: a comparison between single-particle SEM-EDS analysis and whole-sample PIXE analysis. J Environ Monit. 2011;13:732–42.

    Article  CAS  PubMed  Google Scholar 

  • Morishita Y, Yoshioka Y, Satoh H, Nojiri N, Nagano K, Abe Y, et al. Distribution and histologic effects of intravenously administered amorphous nanosilica particles in the testes of mice. Biochem Biophys Res Commun. 2012;420:297–301.

    Article  CAS  PubMed  Google Scholar 

  • Napierska D, Thomassen LC, Lison D, Martens JA, Hoet PH. The nanosilica hazard: another variable entity. Part Fibre Toxicol. 2010;7:39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ogliari KS, Lichtenfels AJ, de Marchi MR, Ferreira AT, Dolhnikoff M, Saldiva PH. Intrauterine exposure to diesel exhaust diminishes adult ovarian reserve. Fertil Steril. 2013;99:1681–8.

    Article  CAS  PubMed  Google Scholar 

  • Pinton P, Giorgi C, Siviero R, Zecchini E, Rizzuto R. Calcium and apoptosis: ER-mitochondria Ca2+ transfer in the control of apoptosis. Oncogene. 2008;27:6407–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poone GK, Hasseldam H, Munkholm N, Rasmussen RS, Gronberg NV, Johansen FF. The hypothermic influence on CHOP and Ero1-alpha in an endoplasmic reticulum stress model of cerebral ischemia. Brain Sci. 2015;5:178–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rao J, Zhang C, Wang P, Lu L, Qian X, Qin J, et al. C/EBP homologous protein (CHOP) contributes to hepatocyte death via the promotion of ERO1alpha signalling in acute liver failure. Biochem J. 2015;466:369–78.

    Article  CAS  PubMed  Google Scholar 

  • Ren L, Liu J, Wei J, Du Y, Zou K, Yan Y, et al. Silica nanoparticles induce unfolded protein reaction mediated apoptosis in spermatocyte cells. Toxicol Res (camb). 2020;9:454–60.

    Article  PubMed  Google Scholar 

  • Sano R, Reed JC. ER stress-induced cell death mechanisms. Biochim Biophys Acta. 2013;1833:3460–70.

    Article  CAS  PubMed  Google Scholar 

  • Serysheva II, Baker MR, Fan G. Structural Insights into IP3R Function. Adv Exp Med Biol. 2017;981:121–47.

    Article  CAS  PubMed  Google Scholar 

  • Shirasuna K, Usui F, Karasawa T, Kimura H, Kawashima A, Mizukami H, et al. Nanosilica-induced placental inflammation and pregnancy complications: different roles of the inflammasome components NLRP3 and ASC. Nanotoxicology. 2015;9:554–67.

    Article  CAS  PubMed  Google Scholar 

  • Sovolyova N, Healy S, Samali A, Logue SE. Stressed to death - mechanisms of ER stress-induced cell death. Biol Chem. 2014;395:1–13.

    Article  CAS  PubMed  Google Scholar 

  • Sun L, Sogo Y, Wang X, Ito A. Biosafety of mesoporous silica nanoparticles: a combined experimental and literature study. J Mater Sci Mater Med. 2021;32:102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang J, Li Y, Duan J, Yang M, Yu Y, Feng L, et al. Silica nanoparticles induce autophagosome accumulation via activation of the EIF2AK3 and ATF6 UPR pathways in hepatocytes. Autophagy. 2018;14:1185–200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang T, Zhang Z, Xie M, Li S, Zhang J, Zhou J. Apigenin attenuates mesoporous silica nanoparticles-induced nephrotoxicity by activating FOXO3a. Biol Trace Elem Res. 2022;200:2793–806.

    Article  CAS  PubMed  Google Scholar 

  • Wu TS, Zhang SH, Liang X, He KY, Wei TT, Wang Y, et al. The apoptosis induced by silica nanoparticle through endoplasmic reticulum stress response in human pulmonary alveolar epithelial cells. Toxicol in Vitro. 2019;56:126–32.

    Article  CAS  PubMed  Google Scholar 

  • Xu Y, Wang N, Yu Y, Li Y, Li YB, Yu YB, et al. Exposure to silica nanoparticles causes reversible damage of the spermatogenic process in mice. PLoS One. 2014;9:e101572.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yamashita K, Yoshioka Y, Higashisaka K, Mimura K, Morishita Y, Nozaki M, et al. Silica and titanium dioxide nanoparticles cause pregnancy complications in mice. Nat Nanotechnol. 2011;6:321–8.

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Yu Y, Wang J, Li Y, Li Y, Wei J, et al. Silica nanoparticles induced intrinsic apoptosis in neuroblastoma SH-SY5Y cells via CytC/Apaf-1 pathway. Environ Toxicol Pharmacol. 2017;52:161–9.

    Article  CAS  PubMed  Google Scholar 

  • Ye J, Koumenis C. ATF4, an ER stress and hypoxia-inducible transcription factor and its potential role in hypoxia tolerance and tumorigenesis. Curr Mol Med. 2009;9:411–6.

    Article  CAS  PubMed  Google Scholar 

  • Yin H, Fang L, Wang L, Xia Y, Tian J, Ma L, et al. Acute silica exposure triggers pulmonary inflammation through macrophage pyroptosis: an experimental simulation. Front Immunol. 2022;13:874459.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang C. Roles of Grp78 in female mammalian reproduction. Adv Anat Embryol Cell Biol. 2017;222:129–55.

    Article  PubMed  Google Scholar 

  • Zhang J, Ye R, Grunberger JW, Jin J, Zhang Q, Mohammadpour R et al. Activation of autophagy by low-dose silica nanoparticles enhances testosterone secretion in Leydig cells. Int J Mol Sci. 2022;23:3104.

  • Zhang LH, Niu YB, Zhu L, Fang JQ, Wang X, Wang L, et al. Different interaction modes for protein-disulfide isomerase (PDI) as an efficient regulator and a specific substrate of endoplasmic reticulum oxidoreductin-1 alpha (Ero1 alpha). J Biol Chem. 2014;289:31188–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang LS, Wei JL, Duan JC, Guo CX, Zhang J, Ren LH, et al. Silica nanoparticles exacerbates reproductive toxicity development in high-fat diet-treated Wistar rats. J Hazard Mater. 2020;384:121361.

  • Zhang Y, Hu H, Shi Y, Yang X, Cao L, Wu J, et al. (1)H NMR-based metabolomics study on repeat dose toxicity of fine particulate matter in rats after intratracheal instillation. Sci Total Environ. 2017;589:212–21.

    Article  CAS  PubMed  Google Scholar 

  • Zhu Y, Zhang Y, Li Y, Guo C, Fan Z, Li Y, et al. Integrative proteomics and metabolomics approach to elucidate metabolic dysfunction induced by silica nanoparticles in hepatocytes. J Hazard Mater. 2022;434:128820.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This research was funded by the National Natural Science Foundation of China (31702298), the Natural Science Foundation of Jiangsu Province (BK20170498), the China Postdoctoral Science Foundation (2017M621843), the Postgraduate Research & Practice Innovation Program of Jiangsu Province (SJCX21_1643 and SJCX21_1639), High Talent Supporting Program of Yangzhou University (Dr. Fenglei Chen), the Qing Lan Project of Yangzhou University (Dr. Fenglei Chen), the United States National Institute of Environmental Health Sciences (R01ES024681), and the Priority Academic Program Development of Jiangsu Higher Education Institution (PAPD).

Author information

Authors and Affiliations

Authors

Contributions

F.C. wrote the main manuscript text. J.G. and Y.W. prepared Fig. S1. Z.Z. prepared Fig. 1. F.C., J.S., Y.W., and J.Z. prepared Figs. 2, 3, 4, 5, 6, 7, 8, and 9. F.C., X.X., X.Z., N.K., H.G., and J.Z. revised the manuscript. F.C. and J.S. responded the comments of the reviewers. F.C. and H.G. provided the funding. All authors reviewed the manuscript.

Corresponding authors

Correspondence to Fenglei Chen or Jinlong Zhang.

Ethics declarations

Ethics approval

All the methods in the present study were performed according to the approved guidelines. All surgery was performed under chloral hydrate, and all efforts were made to minimize suffering. All experiments were approved by the Committee on the Ethics of Animal Experiments of Yangzhou University (review number: 202103322).

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 4003 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, F., Sun, J., Wang, Y. et al. Silica nanoparticles induce ovarian granulosa cell apoptosis via activation of the PERK-ATF4-CHOP-ERO1α pathway-mediated IP3R1-dependent calcium mobilization. Cell Biol Toxicol 39, 1715–1734 (2023). https://doi.org/10.1007/s10565-022-09776-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10565-022-09776-4

Keywords

Navigation