Skip to main content
Log in

Single-cell transcriptomic analysis reveals the adverse effects of cadmium on the trajectory of neuronal maturation

  • Research
  • Published:
Cell Biology and Toxicology Aims and scope Submit manuscript

Abstract

Cadmium (Cd) is an extensively existing environmental pollutant that has neurotoxic effects. However, the molecular mechanism of Cd on neuronal maturation is unveiled. Single-cell RNA sequencing (scRNA-seq) has been widely used to uncover cellular heterogeneity and is a powerful tool to reconstruct the developmental trajectory of neurons. In this study, neural stem cells (NSCs) from subventricular zone (SVZ) of newborn mice were treated with CdCl2 for 24 h and differentiated for 7 days to obtain neuronal lineage cells. Then scRNA-seq analysis identified five cell stages with different maturity in neuronal lineage cells. Our findings revealed that Cd altered the trajectory of maturation of neuronal lineage cells by decreasing the number of cells in different stages and hindering their maturation. Cd induced differential transcriptome expression in different cell subpopulations in a stage-specific manner. Specifically, Cd induced oxidative damage and changed the proportion of cell cycle phases in the early stage of neuronal development. Furthermore, the autocrine and paracrine signals of Wnt5a were downregulated in the low mature neurons in response to Cd. Importantly, activation of Wnt5a effectively rescued the number of neurons and promoted their maturation. Taken together, the findings of this study provide new and comprehensive insights into the adverse effect of Cd on neuronal maturation.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of data and material

All data generated or analyzed during this study are included in this published article.

References

  • Arredondo SB, Guerrero FG, Herrera-Soto A, Jensen-Flores J, Bustamante DB, Oñate-Ponce A, Henny P, Varas-Godoy M, Inestrosa NC, Varela-Nallar L. Wnt5a promotes differentiation and development of adult-born neurons in the hippocampus by noncanonical Wnt signaling. Stem Cells. 2020;38(3):422–36.

    Article  CAS  PubMed  Google Scholar 

  • Arredondo SB, Valenzuela-Bezanilla D, Mardones MD, Varela-Nallar L. Role of Wnt signaling in adult hippocampal neurogenesis in health and disease. Frontiers in Cell and Developmental Biology. 2020;8:860–860.

    Article  PubMed  PubMed Central  Google Scholar 

  • Atashi F, Modarressi A, Pepper MS. The role of reactive oxygen species in mesenchymal stem cell adipogenic and osteogenic differentiation: a review. Stem Cells Dev. 2015;24(10):1150–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baroncelli L, Lunghi C. Neuroplasticity of the visual cortex: in sickness and in health. Exp Neurol. 2021;335:113515.

    Article  PubMed  Google Scholar 

  • Bath KG, Mandairon N, Jing D, Rajagopal R, Kapoor R, Chen ZY, Khan T, Proenca CC, Kraemer R, Cleland TA, Hempstead BL, Chao MV, Lee FS. Variant brain-derived neurotrophic factor (Val66Met) alters adult olfactory bulb neurogenesis and spontaneous olfactory discrimination. J Neurosci. 2008;28(10):2383–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berardi N, Pizzorusso T, Maffei L. Critical periods during sensory development. Curr Opin Neurobiol. 2000;10(1):138–45.

    Article  CAS  PubMed  Google Scholar 

  • Bhardwaj JK, Panchal H, Saraf P. Cadmium as a testicular toxicant: a review. J Appl Toxicol. 2021;41(1):105–17.

    Article  CAS  PubMed  Google Scholar 

  • Bjorklund G, Stejskal V, Urbina MA, Dadar M, Chirumbolo S, Mutter J. Metals and Parkinson’s disease: mechanisms and biochemical processes. Curr Med Chem. 2018;25(19):2198–214.

    Article  CAS  PubMed  Google Scholar 

  • Blakely BD, Bye CR, Fernando CV, Horne MK, Macheda ML, Stacker SA, Arenas E, Parish CL. Wnt5a regulates midbrain dopaminergic axon growth and guidance. PLoS ONE. 2011;6(3):e18373.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bondier JR, Michel G, Propper A, Badot PM. Harmful effects of cadmium on olfactory system in mice. Inhal Toxicol. 2008;20(13):1169–77.

    Article  CAS  PubMed  Google Scholar 

  • Branca JJV, Morucci G, Pacini A. Cadmium-induced neurotoxicity: still much ado. Neural Regen Res. 2018;13(11):1879–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Breton-Provencher V, Saghatelyan A. Newborn neurons in the adult olfactory bulb: unique properties for specific odor behavior. Behav Brain Res. 2012;227(2):480–9.

    Article  PubMed  Google Scholar 

  • Chen L, Liu L, Huang S. Cadmium activates the mitogen-activated protein kinase (MAPK) pathway via induction of reactive oxygen species and inhibition of protein phosphatases 2A and 5. Free Radic Biol Med. 2008;45(7):1035–44.

    Article  CAS  PubMed  Google Scholar 

  • Chen C, Ma Q, Liu C, Deng P, Zhu G, Zhang L, He M, Lu Y, Duan W, Pei L, Li M, Yu Z, Zhou Z. Exposure to 1800 MHz radiofrequency radiation impairs neurite outgrowth of embryonic neural stem cells. Sci Rep. 2014;4:5103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen B, Carr L, Dun XP. Dynamic expression of Slit1-3 and Robo1-2 in the mouse peripheral nervous system after injury. Neural Regen Res. 2020;15(5):948–58.

    Article  CAS  PubMed  Google Scholar 

  • Chin-Chan M, Navarro-Yepes J, Quintanilla-Vega B. Environmental pollutants as risk factors for neurodegenerative disorders: Alzheimer and Parkinson diseases. Front Cell Neurosci. 2015;9:124.

    Article  PubMed  PubMed Central  Google Scholar 

  • Cho JH, Kim AH, Lee S, Lee Y, Lee WJ, Chang SC, Lee J. Sensitive neurotoxicity assessment of bisphenol A using double immunocytochemistry of DCX and MAP2. Arch Pharm Res. 2018;41(11):1098–107.

    Article  CAS  PubMed  Google Scholar 

  • Da Silva JS, Dotti CG. Breaking the neuronal sphere: regulation of the actin cytoskeleton in neuritogenesis. Nat Rev Neurosci. 2002;3(9):694–704.

    Article  PubMed  Google Scholar 

  • Dehay C, Kennedy H. Cell-cycle control and cortical development. Nat Rev Neurosci. 2007;8(6):438–50.

    Article  CAS  PubMed  Google Scholar 

  • Furlanis E, Scheiffele P. Regulation of neuronal differentiation, function, and plasticity by alternative splicing. Annu Rev Cell Dev Biol. 2018;34:451–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Genchi, G., M. S. Sinicropi, G. Lauria, A. Carocci and A. Catalano (2020). “The effects of cadmium toxicity.” Int J Environ Res Public Health 17(11).

  • Green AJ, Planchart A. The neurological toxicity of heavy metals: a fish perspective. Comp Biochem Physiol C Toxicol Pharmacol. 2018;208:12–9.

    Article  CAS  PubMed  Google Scholar 

  • Harashima S, Wang Y, Horiuchi T, Seino Y, Inagaki N. Purkinje cell protein 4 positively regulates neurite outgrowth and neurotransmitter release. J Neurosci Res. 2011;89(10):1519–30.

    Article  CAS  PubMed  Google Scholar 

  • Hindley C, Philpott A. Co-ordination of cell cycle and differentiation in the developing nervous system. Biochem J. 2012;444(3):375–82.

    Article  CAS  PubMed  Google Scholar 

  • Huang C, Chen M, Pang D, Bi D, Zou Y, Xia X, Yang W, Luo L, Deng R, Tan H, Zhou L, Yu S, Guo L, Du X, Cui Y, Hu J, Mao Q, Worley PF, Xiao B. Developmental and activity-dependent expression of LanCL1 confers antioxidant activity required for neuronal survival. Dev Cell. 2014;30(4):479–87.

    Article  PubMed  PubMed Central  Google Scholar 

  • Jomova K, Valko M. Advances in metal-induced oxidative stress and human disease. Toxicology. 2011;283(2–3):65–87.

    Article  CAS  PubMed  Google Scholar 

  • Kara N, Narayanan S, Belmaker RH, Einat H, Vaidya VA, Agam G. Chronic lithium treatment enhances the number of quiescent neural progenitors but not the number of DCX-positive immature neurons. Int J Neuropsychopharmacol. 2015;18(7):pyv003.

  • Kempermann G. Environmental enrichment, new neurons and the neurobiology of individuality. Nat Rev Neurosci. 2019;20(4):235–45.

    Article  CAS  PubMed  Google Scholar 

  • Kempermann G, Song H, Gage FH. Neurogenesis in the adult hippocampus. Cold Spring Harb Perspect Biol. 2015;7(9):a018812.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kole AJ, Annis RP, Deshmukh M. Mature neurons: equipped for survival. Cell Death Dis. 2013;4(6):e689.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kutsuna N, Murata Y, Eriguchi T, Takada Y, Oshima H, Sakatani K, Katayama Y. DCX-expressing neurons decrease in the retrosplenial cortex after global brain ischemia. Adv Exp Med Biol. 2013;765:115–21.

    Article  PubMed  Google Scholar 

  • Lee J, Cho YS, Jung H, Choi I. Pharmacological regulation of oxidative stress in stem cells. Oxid Med Cell Longev. 2018;2018:4081890.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lim L, Mi D, Llorca A, Marín O. Development and functional diversification of cortical interneurons. Neuron. 2018;100(2):294–313.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lim, D. A. and A. Alvarez-Buylla (2016). “The adult ventricular-subventricular zone (V-SVZ) and olfactory bulb (OB) neurogenesis.” Cold Spring Harb Perspect Biol 8(5).

  • Lledo PM, Alonso M, Grubb MS. Adult neurogenesis and functional plasticity in neuronal circuits. Nat Rev Neurosci. 2006;7(3):179–93.

    Article  CAS  PubMed  Google Scholar 

  • Lopez E, Figueroa S, Oset-Gasque MJ, Gonzalez MP. Apoptosis and necrosis: two distinct events induced by cadmium in cortical neurons in culture. Br J Pharmacol. 2003;138(5):901–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • López-Bendito G, Flames N, Ma L, Fouquet C, Di Meglio T, Chedotal A, Tessier-Lavigne M, Marín O. Robo1 and Robo2 cooperate to control the guidance of major axonal tracts in the mammalian forebrain. J Neurosci. 2007;27(13):3395–407.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mascagni P, Consonni D, Bregante G, Chiappino G, Toffoletto F. Olfactory function in workers exposed to moderate airborne cadmium levels. Neurotoxicology. 2003;24(4–5):717–24.

    Article  CAS  PubMed  Google Scholar 

  • Namgyal D, Ali S, Mehta R, Sarwat M. The neuroprotective effect of curcumin against Cd-induced neurotoxicity and hippocampal neurogenesis promotion through CREB-BDNF signaling pathway. Toxicology. 2020;442:152542.

    Article  CAS  PubMed  Google Scholar 

  • Pacal M, Bremner R. Mapping differentiation kinetics in the mouse retina reveals an extensive period of cell cycle protein expression in post-mitotic newborn neurons. Dev Dyn. 2012;241(10):1525–44.

    Article  CAS  PubMed  Google Scholar 

  • Paina S, Garzotto D, DeMarchis S, Marino M, Moiana A, Conti L, Cattaneo E, Perera M, Corte G, Calautti E, Merlo GR. Wnt5a is a transcriptional target of Dlx homeogenes and promotes differentiation of interneuron progenitors in vitro and in vivo. J Neurosci. 2011;31(7):2675–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park Y, Ryu JK. Models of synaptotagmin-1 to trigger Ca(2+) -dependent vesicle fusion. FEBS Lett. 2018;592(21):3480–92.

    Article  CAS  PubMed  Google Scholar 

  • Pfisterer U, Khodosevich K. Neuronal survival in the brain: neuron type-specific mechanisms. Cell Death Dis. 2017;8(3):e2643.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pi H, Xu S, Reiter RJ, Guo P, Zhang L, Li Y, Li M, Cao Z, Tian L, Xie J, Zhang R, He M, Lu Y, Liu C, Duan W, Yu Z, Zhou Z. SIRT3-SOD2-mROS-dependent autophagy in cadmium-induced hepatotoxicity and salvage by melatonin. Autophagy. 2015;11(7):1037–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quina LA, Walker A, Morton G, Han V, Turner EE. GAD2 expression defines a class of excitatory lateral habenula neurons in mice that project to the raphe and pontine tegmentum. eNeuro. 2020;7(3). https://doi.org/10.1523/ENEURO.0527-19.2020.

  • Rani A, Kumar A, Lal A, Pant M. Cellular mechanisms of cadmium-induced toxicity: a review. Int J Environ Health Res. 2014;24(4):378–99.

    Article  CAS  PubMed  Google Scholar 

  • Rinaldi M, Micali A, Marini H, Adamo EB, Puzzolo D, Pisani A, Trichilo V, Altavilla D, Squadrito F, Minutoli L. Cadmium, organ toxicity and therapeutic approaches: a review on brain, kidney and testis damage. Curr Med Chem. 2017;24(35):3879–93.

    Article  CAS  PubMed  Google Scholar 

  • Sabolić I, Breljak D, Skarica M, Herak-Kramberger CM. Role of metallothionein in cadmium traffic and toxicity in kidneys and other mammalian organs. Biometals. 2010;23(5):897–926.

    Article  PubMed  Google Scholar 

  • Sarnat HB. Clinical neuropathology practice guide 5–2013: markers of neuronal maturation. Clin Neuropathol. 2013;32(5):340–69.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sarnat HB. Immunocytochemical markers of neuronal maturation in human diagnostic neuropathology. Cell Tissue Res. 2015;359(1):279–94.

    Article  CAS  PubMed  Google Scholar 

  • Satarug S, Garrett SH, Sens MA, Sens DA. Cadmium, environmental exposure, and health outcomes. Environ Health Perspect. 2010;118(2):182–90.

    Article  CAS  PubMed  Google Scholar 

  • Shen H, Wang J, Jiang D, Xu P, Zhu X, Zhang Y, Yu X, Won MH, Su PQ, Yan BC. Topiramate improves neuroblast differentiation of hippocampal dentate gyrus in the D-galactose-induced aging mice via its antioxidant effects. Cell Mol Neurobiol. 2017;37(5):869–77.

    Article  CAS  PubMed  Google Scholar 

  • Shimeld SM, Degnan B, Luke GN. Evolutionary genomics of the Fox genes: origin of gene families and the ancestry of gene clusters. Genomics. 2010;95(5):256–60.

    Article  CAS  PubMed  Google Scholar 

  • Song B, Xiong G, Luo H, Zuo Z, Zhou Z, Chang X. Single-cell RNA sequencing of mouse neural stem cell differentiation reveals adverse effects of cadmium on neurogenesis. Food Chem Toxicol. 2021;148:111936.

    Article  CAS  PubMed  Google Scholar 

  • Subashini C, Dhanesh SB, Chen CM, Riya PA, Meera V, Divya TS, Kuruvilla R, Buttler K, James J. Wnt5a is a crucial regulator of neurogenesis during cerebellum development. Sci Rep. 2017;7:42523.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sulkowski WJ, Rydzewski B, Miarzynska M. Smell impairment in workers occupationally exposed to cadmium. Acta Otolaryngol. 2000;120(2):316–8.

    Article  CAS  PubMed  Google Scholar 

  • Tjälve H, Henriksson J. Uptake of metals in the brain via olfactory pathways. Neurotoxicology. 1999;20(2–3):181–95.

    PubMed  Google Scholar 

  • Trapnell C, Cacchiarelli D, Grimsby J, Pokharel P, Li S, Morse M, Lennon NJ, Livak KJ, Mikkelsen TS, Rinn JL. The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat Biotechnol. 2014;32(4):381–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Aelst L, Cline HT. Rho GTPases and activity-dependent dendrite development. Curr Opin Neurobiol. 2004;14(3):297–304.

    Article  PubMed  Google Scholar 

  • Wang W, Nag S, Zhang X, Wang MH, Wang H, Zhou J, Zhang R. Ribosomal proteins and human diseases: pathogenesis, molecular mechanisms, and therapeutic implications. Med Res Rev. 2015;35(2):225–85.

    Article  PubMed  Google Scholar 

  • Wang H, Zhang L, Abel GM, Storm DR, Xia Z. Cadmium exposure impairs cognition and olfactory memory in male C57BL/6 mice. Toxicol Sci. 2018;161(1):87–102.

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Matsushita MT, Abel GM, Storm DR, Xia Z. Inducible and conditional activation of ERK5 MAP kinase rescues mice from cadmium-induced olfactory memory deficits. Neurotoxicology. 2020;81:127–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, H., G. M. Abel, D. R. Storm and Z. Xia (2019). “Cadmium exposure impairs adult hippocampal neurogenesis.” Toxicol Sci.

  • Yang H, Shu Y. Cadmium transporters in the kidney and cadmium-induced nephrotoxicity. Int J Mol Sci. 2015;16(1):1484–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoo DY, Shin BN, Kim IH, Kim W, Kim DW, Yoo KY, Choi JH, Lee CH, Yoon YS, Choi SY, Won MH, Hwang IK. Effects of Cu, Zn-superoxide dismutase on cell proliferation and neuroblast differentiation in the mouse dentate gyrus. Neurochem Res. 2012;37(2):261–7.

    Article  CAS  PubMed  Google Scholar 

  • Zhang C, Gao J, Zhang H, Sun L, Peng G. Robo2–slit and Dcc–netrin1 coordinate neuron axonal pathfinding within the embryonic axon tracts. J Neurosci. 2012;32(36):12589–602.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao C, Teng EM, Summers RG Jr, Ming GL, Gage FH. Distinct morphological stages of dentate granule neuron maturation in the adult mouse hippocampus. J Neurosci. 2006;26(1):3–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao L, Yan M, Wang X, Xiong G, Wu C, Wang Z, Zhou Z, Chang X. Modification of Wnt signaling pathway on paraquat-induced inhibition of neural progenitor cell proliferation. Food Chem Toxicol. 2018;121:311–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao T, Fu Y, Zhu J, Liu Y, Zhang Q, Yi Z, Chen S, Jiao Z, Xu X, Xu J, Duo S, Bai Y, Tang C, Li C, Deng H. Single-cell RNA-Seq reveals dynamic early embryonic-like programs during chemical reprogramming. Cell Stem Cell. 2018;23(1):31-45.e37.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Thanks to NovelBio Bio-Pharm Technology Co., Ltd. (Shanghai, China) for assistance with single-cell RNA sequencing and data visualization. The authors are grateful to PhD. Lin Jia of the University of Texas at Dallas for writing assistance.

Funding

This work was funded by the Shanghai Municipal Health Commission (GWV-10.1-XK11).

Author information

Authors and Affiliations

Authors

Contributions

Bo Song: data curation, writing original draft preparation, and visualization; Yuwei Zhang: data curation, writing, reviewing, and editing; Guiya Xiong: data curation, reviewing, and editing; Huna Luo: visualization, writing, reviewing, and editing; Bing Zhang: reviewing and editing; Yixi Li: methodology; Zhibin Wang and Zhijun Zhou: supervision, validation, and conceptualization; Xiuli Chang: reviewing, methodology, supervision, and validation.

Corresponding author

Correspondence to Xiuli Chang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval

The experimental protocol was established, according to the ethical guidelines of the Helsinki Declaration and was approved by the the Animal Care Committee of Fudan University.

Human ethics

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of interest

The author declares no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file (DOCX 1227 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, B., Zhang, Y., Xiong, G. et al. Single-cell transcriptomic analysis reveals the adverse effects of cadmium on the trajectory of neuronal maturation. Cell Biol Toxicol 39, 1697–1713 (2023). https://doi.org/10.1007/s10565-022-09775-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10565-022-09775-5

Keywords

Navigation