Skip to main content
Log in

Transcriptomic analysis in zebrafish larvae identifies iron-dependent mitochondrial dysfunction as a possible key event of NAFLD progression induced by benzo[a]pyrene/ethanol co-exposure

  • Original Article
  • Published:
Cell Biology and Toxicology Aims and scope Submit manuscript

Abstract

Non-alcoholic fatty liver disease (NAFLD) is a worldwide epidemic for which environmental contaminants are increasingly recognized as important etiological factors. Among them, the combination of benzo[a]pyrene (B[a]P), a potent environmental carcinogen, with ethanol, was shown to induce the transition of steatosis toward steatohepatitis. However, the underlying mechanisms involved remain to be deciphered. In this context, we used high-fat diet fed zebrafish model, in which we previously observed progression of steatosis to a steatohepatitis-like state following a 7-day-co-exposure to 43 mM ethanol and 25 nM B[a]P. Transcriptomic analysis highlighted the potent role of mitochondrial dysfunction, alterations in heme and iron homeostasis, involvement of aryl hydrocarbon receptor (AhR) signaling, and oxidative stress. Most of these mRNA dysregulations were validated by RT-qPCR. Moreover, similar changes were observed using a human in vitro hepatocyte model, HepaRG cells. The mitochondria structural and functional alterations were confirmed by transmission electronic microscopy and Seahorse technology, respectively. Involvement of AhR signaling was evidenced by using in vivo an AhR antagonist, CH223191, and in vitro in AhR-knock-out HepaRG cells. Furthermore, as co-exposure was found to increase the levels of both heme and hemin, we investigated if mitochondrial iron could induce oxidative stress. We found that mitochondrial labile iron content was raised in toxicant-exposed larvae. This increase was prevented by the iron chelator, deferoxamine, which also inhibited liver co-exposure toxicity. Overall, these results suggest that the increase in mitochondrial iron content induced by B[a]P/ethanol co-exposure causes mitochondrial dysfunction that contributes to the pathological progression of NAFLD.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

All transcriptomic data are available in our supplemental files.

Abbreviations

AhR:

Aryl hydrocarbon receptor

AhR-KO:

AhR knock out

AMEN:

Annotation, Mapping, Expression and Network suite of tools

ANOVA:

One-way analysis of variance

B[a]P:

Benzo[a]pyrene

CREEA:

Comité Rennais d’Ethique en matière d’Expérimentation Animale

DMSO:

Dimethyl sulfoxide

DPF:

Days post-fertilization

FA:

Fatty acids

FCCP:

Carbonyl cyanide-p-trifluoromethoxyphenylhydrazone

GEO:

Expression Omnibus

GO:

Gene ontology

GOEA:

Gene ontology enrichment analysis

HES:

Hematoxylin-eosin-safranin

HFD:

High-fat diet

HO1:

Heme oxygenase 1

IARC:

International Agency for Research on Cancer

IPA:

Ingenuity pathway analysis

KEGG:

Kyoto Encyclopedia of Genes and Genomes

NADP:

Nicotinamide adenine dinucleotide phosphate

NAFLD:

Alcoholic fatty liver disease

NaN3 :

Sodium azide

NASH:

Non-alcoholic steatohepatitis

NOS:

Reactive nitrogen species

OCR:

Oxygen consumption rate

OXPHOS:

Oxidative phosphorylation

PAH:

Polycyclic aryl hydrocarbon

PBS:

Phosphate-buffered saline

PMT:

Photomultiplier tube

ROS:

Reactive oxygen species

SEM:

Standard error of the mean

T2DM:

Type 2 diabetes mellitus

TAFLD:

Toxicant-associated fatty liver diseases

TASH:

Toxicant-associated steatohepatitis

TCDD:

2,3,7,8-Tetrachlorodibenzo-p-dioxin

TEM:

Transmission electronic microscopy

References

  • Batiha GE-S, Beshbishy AM, Ikram M, Mulla ZS, El-Hack MEA, Taha AE, et al. The pharmacological activity, biochemical properties, and pharmacokinetics of the major natural polyphenolic flavonoid: quercetin. Foods. 2020;9(3):374.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Begriche K, Massart J, Robin M-A, Bonnet F, Fromenty B. Mitochondrial adaptations and dysfunctions in nonalcoholic fatty liver disease. Hepatol Baltim Md. 2013;58(4):1497–507.

    Article  CAS  Google Scholar 

  • Begriche K, Massart J, Fromenty B. Chapter 15 - Mitochondrial dysfunction induced by xenobiotics: involvement in steatosis and steatohepatitis. In: Morio B, Pénicaud L, Rigoulet M, editors. Mitochondria in obesity and type 2 diabetes. Academic Press; 2019. pp. 347–64. https://doi.org/10.1016/B978-0-12-811752-1.00015-8.

  • Britton LJ, Subramaniam VN, Crawford DH. Iron and non-alcoholic fatty liver disease. World J Gastroenterol. 2016;22(36):8112–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bucher S, Le Guillou D, Allard J, Pinon G, Begriche K, Tête A, et al. Possible involvement of mitochondrial dysfunction and oxidative stress in a cellular model of NAFLD progression induced by benzo[a]pyrene/ethanol coexposure. Oxid Med Cell Longev. 2018a;2018:4396403.

  • Bucher S, Tête A, Podechard N, Liamin M, Le Guillou D, Chevanne M, et al. Co-exposure to benzo[a]pyrene and ethanol induces a pathological progression of liver steatosis in vitro and in vivo. Sci Rep. 2018b;8(1):5963.

  • Burton GW, Ingold KU. Vitamin E as an in vitro and in vivo antioxidant. Ann N Y Acad Sci. 1989;570(1 Vitamin E):7–22.

    Article  CAS  PubMed  Google Scholar 

  • Cao JY, Dixon SJ. Mechanisms of ferroptosis. Cell Mol Life Sci CMLS. 2016;73(11–12):2195–209.

    Article  CAS  PubMed  Google Scholar 

  • Cella M, Colonna M. Aryl hydrocarbon receptor: linking environment to immunity. Semin Immunol. 2015;27(5):310–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chu J, Sadler KC. New school in liver development: lessons from zebrafish. Hepatol Baltim Md. 2009;50(5):1656–63.

    Article  CAS  Google Scholar 

  • Collin A, Hardonnière K, Chevanne M, Vuillemin J, Podechard N, Burel A, et al. Cooperative interaction of benzo[a]pyrene and ethanol on plasma membrane remodeling is responsible for enhanced oxidative stress and cell death in primary rat hepatocytes. Free Radic Biol Med. 2014;72:11–22.

    Article  CAS  PubMed  Google Scholar 

  • Corradini E, Pietrangelo A. Iron and steatohepatitis. J Gastroenterol Hepatol. 2012;27(Suppl 2):42–6.

    Article  CAS  PubMed  Google Scholar 

  • Das DN, Bhutia SK. Inevitable dietary exposure of benzo[a]pyrene: carcinogenic risk assessment an emerging issues and concerns. Curr Opin Food Sci. 2018;24:16–25.

    Article  Google Scholar 

  • Donegan RK, Moore CM, Hanna DA, Reddi AR. Handling heme: the mechanisms underlying the movement of heme within and between cells. Free Radic Biol Med. 2019;133:88–100.

    Article  CAS  PubMed  Google Scholar 

  • Driessen M, Kienhuis AS, Pennings JLA, Pronk TE, van de Brandhof E-J, Roodbergen M, et al. Exploring the zebrafish embryo as an alternative model for the evaluation of liver toxicity by histopathology and expression profiling. Arch Toxicol. 2013;87(5):807–23.

    Article  CAS  PubMed  Google Scholar 

  • Driessen M, Kienhuis AS, Vitins AP, Pennings JLA, Pronk TE, van den Brandhof E-J, et al. Gene expression markers in the zebrafish embryo reflect a hepatotoxic response in animal models and humans. Toxicol Lett. 2014;230(1):48–56.

    Article  CAS  PubMed  Google Scholar 

  • Fader KA, Zacharewski TR. Beyond the aryl hydrocarbon receptor: pathway interactions in the hepatotoxicity of 2,3,7,8-tetrachlorodibenzo-p-dioxin and related compounds. Curr Opin Toxicol. 2017;2:36–41.

    Article  PubMed  PubMed Central  Google Scholar 

  • Fader KA, Nault R, Kirby MP, Markous G, Matthews J, Zacharewski TR. Convergence of hepcidin deficiency, systemic iron overloading, heme accumulation, and REV-ERBα/β activation in aryl hydrocarbon receptor-elicited hepatotoxicity. Toxicol Appl Pharmacol. 2017;321:1–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fazel Y, Koenig AB, Sayiner M, Goodman ZD, Younossi ZM. Epidemiology and natural history of non-alcoholic fatty liver disease. Metabolism. 2016;65(8):1017–25.

    Article  CAS  PubMed  Google Scholar 

  • Goessling W, Sadler KC. Zebrafish: an important tool for liver disease research. Gastroenterology. 2015;149(6):1361–77.

    Article  PubMed  Google Scholar 

  • Goldstone JV, McArthur AG, Kubota A, Zanette J, Parente T, Jönsson ME, et al. Identification and developmental expression of the full complement of cytochrome P450 genes in zebrafish. BMC Genomics. 2010;11:643.

    Article  PubMed  PubMed Central  Google Scholar 

  • Goodale BC, La Du JK, Bisson WH, Janszen DB, Waters KM, Tanguay RL. AHR2 mutant reveals functional diversity of aryl hydrocarbon receptors in zebrafish. PloS One. 2012;7(1):e29346.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gorria M, Huc L, Sergent O, Rebillard A, Gaboriau F, Dimanche-Boitrel M-T, et al. Protective effect of monosialoganglioside GM1 against chemically induced apoptosis through targeting of mitochondrial function and iron transport. Biochem Pharmacol. 2006a;72(10):1343–53.

  • Gorria M, Tekpli X, Sergent O, Huc L, Gaboriau F, Rissel M, et al. Membrane fluidity changes are associated with benzo[a]pyrene-induced apoptosis in F258 cells: protection by exogenous cholesterol. Ann N Y Acad Sci. 2006b;1090:108–12.

  • Grattagliano I, Montezinho LP, Oliveira PJ, Frühbeck G, Gómez-Ambrosi J, Montecucco F, et al. Targeting mitochondria to oppose the progression of nonalcoholic fatty liver disease. Biochem Pharmacol. 2019;160:34–45.

    Article  CAS  PubMed  Google Scholar 

  • Hardonnière K, Saunier E, Lemarié A, Fernier M, Gallais I, Héliès-Toussaint C, et al. The environmental carcinogen benzo[a]pyrene induces a Warburg-like metabolic reprogramming dependent on NHE1 and associated with cell survival. Sci Rep. 2016;04(6):30776.

    Article  Google Scholar 

  • Hardonnière K, Fernier M, Gallais I, Mograbi B, Podechard N, Le Ferrec E, et al. Role for the ATPase inhibitory factor 1 in the environmental carcinogen-induced Warburg phenotype. Sci Rep. 2017;7(1):195.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hwang HJ, Dornbos P, Steidemann M, Dunivin TK, Rizzo M, LaPres JJ. Mitochondrial-targeted aryl hydrocarbon receptor and the impact of 2,3,7,8-tetrachlorodibenzo-p-dioxin on cellular respiration and the mitochondrial proteome. Toxicol Appl Pharmacol. 2016;01(304):121–32.

    Article  Google Scholar 

  • Imran M, Sergent O, Tête A, Gallais I, Chevanne M, Lagadic-Gossmann D, et al. Membrane remodeling as a key player of the hepatotoxicity induced by co-exposure to benzo[a]pyrene and ethanol of obese zebrafish larvae. Biomolecules. 2018;8(2):26. https://doi.org/10.3390/biom8020026.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • International Agency for Research on Cancer (IARC). Chemical agents and related occupations. Published by the International Agency for Research on Cancer. Geneva: WHO Press, World Health Organization; 2012.

  • Ishihara N, Mihara K. PARL paves the way to apoptosis. Nat Cell Biol. 2017;19(4):263–5.

    Article  CAS  PubMed  Google Scholar 

  • Joshi-Barve S, Kirpich I, Cave MC, Marsano LS, McClain CJ. Alcoholic, nonalcoholic, and toxicant-associated steatohepatitis: mechanistic similarities and differences. Cell Mol Gastroenterol Hepatol. 2015;1(4):356–67.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kumar S, Bandyopadhyay U. Free heme toxicity and its detoxification systems in human. Toxicol Lett. 2005;157(3):175–88.

    Article  CAS  PubMed  Google Scholar 

  • Li Z, Li Y, Zhang H-X, Guo J-R, Lam CWK, Wang C-Y, et al. Mitochondria-mediated pathogenesis and therapeutics for non-alcoholic fatty liver disease. Mol Nutr Food Res. 2019;14:e1900043.

    Article  Google Scholar 

  • Liamin M, Le Mentec H, Evrard B, Huc L, Chalmel F, Boutet-Robinet E, et al. Genome-wide transcriptional and functional analysis of human T lymphocytes treated with benzo[α]pyrene. Int J Mol Sci. 2018;19(11):3626. https://doi.org/10.3390/ijms19113626.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luan Y, Zhang F, Cheng Y, Liu J, Huang R, Yan M, et al. Hemin improves insulin sensitivity and lipid metabolism in cultured hepatocytes and mice fed a high-fat diet. Nutrients. 2017;9(8):805.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lv H, Shang P. The significance, trafficking and determination of labile iron in cytosol, mitochondria and lysosomes. Met Integr Biometal Sci. 2018;10(7):899–916.

    Article  CAS  Google Scholar 

  • Mou Y, Wang J, Wu J, He D, Zhang C, Duan C, et al. Ferroptosis, a new form of cell death: opportunities and challenges in cancer. J Hematol Oncol J Hematol Oncol. 2019;12(1):34.

    Article  PubMed  Google Scholar 

  • Qi J, Kim J-W, Zhou Z, Lim C-W, Kim B. Ferroptosis affects the progression of nonalcoholic steatohepatitis via the modulation of lipid peroxidation-mediated cell death in mice. Am J Pathol. 2020;190(1):68–81.

    Article  CAS  PubMed  Google Scholar 

  • Raftery TD, Jayasundara N, Di Giulio RT. A bioenergetics assay for studying the effects of environmental stressors on mitochondrial function in vivo in zebrafish larvae. Comp Biochem Physiol Part C Toxicol Pharmacol. 2017;192:23–32.

    Article  CAS  Google Scholar 

  • Schlegel A. Studying non-alcoholic fatty liver disease with zebrafish: a confluence of optics, genetics, and physiology. Cell Mol Life Sci. 2012;69(23):3953–61. https://doi.org/10.1007/s00018-012-1037-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Severson TJ, Besur S, Bonkovsky HL. Genetic factors that affect nonalcoholic fatty liver disease: a systematic clinical review. World J Gastroenterol. 2016;22(29):6742.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Skouta R, Dixon SJ, Wang J, Dunn DE, Orman M, Shimada K, et al. Ferrostatins inhibit oxidative lipid damage and cell death in diverse disease models. J Am Chem Soc. 2014;136(12):4551–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith AG, Carthew P, Clothier B, Constantin D, Francis JE, Madra S. Synergy of iron in the toxicity and carcinogenicity of polychlorinated biphenyls (PCBs) and related chemicals. Toxicol Lett. 1995;82–83:945–50.

    Article  PubMed  Google Scholar 

  • Szabo G, Saha B. Alcohol’s effect on host defense. Alcohol Res Curr Rev. 2015;37(2):159–70.

    Google Scholar 

  • Szigeti A, Bellyei S, Gasz B, Boronkai A, Hocsak E, Minik O, et al. Induction of necrotic cell death and mitochondrial permeabilization by heme binding protein 2/SOUL. FEBS Lett. 2006;580(27):6447–54.

    Article  CAS  PubMed  Google Scholar 

  • Tappenden DM, Lynn SG, Crawford RB, Lee K, Vengellur A, Kaminski NE, et al. The aryl hydrocarbon receptor interacts with ATP5α1, a subunit of the ATP synthase complex, and modulates mitochondrial function. Toxicol Appl Pharmacol. 2011;254(3):299–310.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tekpli X, Rissel M, Huc L, Catheline D, Sergent O, Rioux V, et al. Membrane remodeling, an early event in benzo[a]pyrene-induced apoptosis. Toxicol Appl Pharmacol. 2010;243(1):68–76.

    Article  CAS  PubMed  Google Scholar 

  • Tête A, Gallais I, Imran M, Chevanne M, Liamin M, Sparfel L, et al. Mechanisms involved in the death of steatotic WIF-B9 hepatocytes co-exposed to benzo[a]pyrene and ethanol: a possible key role for xenobiotic metabolism and nitric oxide. Free Radic Biol Med. 2018;129:323–37.

    Article  PubMed  Google Scholar 

  • Tsurusaki S, Tsuchiya Y, Koumura T, Nakasone M, Sakamoto T, Matsuoka M, et al. Hepatic ferroptosis plays an important role as the trigger for initiating inflammation in nonalcoholic steatohepatitis. Cell Death Dis. 2019;10(6):449.

    Article  PubMed  PubMed Central  Google Scholar 

  • Uno S, Nebert DW, Makishima M. Cytochrome P450 1A1 (CYP1A1) protects against nonalcoholic fatty liver disease caused by Western diet containing benzo[a]pyrene in mice. Food Chem. Toxicol Int J Publ Br Ind Biol Res Assoc. 2018;113:73–82.

    CAS  Google Scholar 

  • Wahlang B, Beier JI, Clair HB, Bellis-Jones HJ, Falkner KC, McClain CJ, et al. Toxicant-associated steatohepatitis. Toxicol Pathol. 2013;41(2):343–60.

    Article  PubMed  Google Scholar 

  • Wahlang B, Jin J, Beier JI, Hardesty JE, Daly EF, Schnegelberger RD, et al. Mechanisms of environmental contributions to fatty liver disease. Curr Environ Health Rep. 2019;6(3):80–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang K-J, Bo J, Yang M, Hong H-S, Wang X-H, Chen F-Y, et al. Hepcidin gene expression induced in the developmental stages of fish upon exposure to Benzo[a]pyrene (BaP). Mar Environ Res. 2009;67(3):159–65.

    Article  CAS  PubMed  Google Scholar 

  • Wang E, Liu X, Tu W, Do DC, Yu H, Yang L, et al. Benzo(a)pyrene facilitates dermatophagoides group 1 (Der f 1)-induced epithelial cytokine release through aryl hydrocarbon receptor in asthma. Allergy. 2019;74(9):1675–90.

    Article  CAS  PubMed  Google Scholar 

  • Younossi ZM. Non-alcoholic fatty liver disease - a global public health perspective. J Hepatol. 2019;70(3):531–44.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We first wish to thank the INRA-LPGP (Institut National de la Recherche Agronomique, Laboratoire de Physiologie et Génomique des Poissons, Rennes, France) for providing zebrafish eggs. We are also very grateful to MRiC and H2P2 platforms (UMS BIOSIT, Rennes, France), notably Stéphanie Dutertre (MRic) for confocal microscopic imagery, Alain Fautrel and Pascal Belaud (H2P2) for their help on histological staining, and finally Agnes Burel (MRiC) for her expertise on electron microscopy. We also wish to thank Dr Olivier Loréal (UMR 1241, Inserm, Rennes) for the fruitful discussion regarding iron homeostasis. We are also grateful to Dr Catherine Lavau for her writing assistance (Irset - Inserm UMR_S 1085, Rennes). Muhammad Imran was the recipient of a fellowship from the Higher Education Commission, Pakistan. Simon Bucher was recipient of fellowships from the Région Bretagne (ARED) and from the Agence Nationale de la Recherche (ANR). We also wish to thank ANR and the Institut Thématique Multi-Organisme Cancer (ITMO Cancer) d’Aviesan for financial supports to our work (STEATOX project, “ANR-13-CESA-0009,” and METAhCOL project, n°17CE040_00).

Funding

This work was supported by the Agence Nationale de la Recherche (ANR) and the Institut Thématique Multi-Organisme Cancer (ITMO Cancer) d’Aviesan (STEATOX project, “ANR-13-CESA-0009,” and METAhCOL project, n°17CE040_00).

Author information

Authors and Affiliations

Authors

Contributions

Conception and design of the study (NP, MI, DLG, OS), acquisition of data (MI, FC, BE, HLM, AD, MB, SB, AL), analysis and interpretation of data (MI, NP, DLG, FC, LS, LH), and drafting the article or revising it critically for important intellectual content (MI, NP, DLG, OS, LS, BF, LH).

Corresponding author

Correspondence to Normand Podechard.

Ethics declarations

Ethics approval

All animal experiments were in agreement with the European Union regulations concerning the use and protection of experimental animals (Directive 2010/63/EU). All protocols were approved by the local ethics committee CREEA (Comité Rennais d’Ethique en matière d’Expérimentation Animale).

Consent for publication

All authors approved of this submission for publication.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Lydie  Sparfel, Dominique Lagadic-Gossmann, and Normand Podechard were co-last authors.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Imran, M., Chalmel, F., Sergent, O. et al. Transcriptomic analysis in zebrafish larvae identifies iron-dependent mitochondrial dysfunction as a possible key event of NAFLD progression induced by benzo[a]pyrene/ethanol co-exposure. Cell Biol Toxicol 39, 371–390 (2023). https://doi.org/10.1007/s10565-022-09706-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10565-022-09706-4

Keywords

Navigation