Skip to main content
Log in

Exosomes derived from hepatitis B virus-infected hepatocytes promote liver fibrosis via miR-222/TFRC axis

  • Original Article
  • Published:
Cell Biology and Toxicology Aims and scope Submit manuscript

Abstract

Exosomal miRNAs activates hepatic stellate cell (HSC) and promote fibrosis. miR-222 was found to be increased in hepatitis B virus (HBV)-infected hepatocytes, and ferroptosis was reported to ameliorate liver fibrosis (LF). Although miR-222 and ferroptosis have been implicated in LF, the association between miR-222 and ferroptosis and how they coordinate to regulate LF are still not explicit. This study investigates the roles of miR-222 and transferrin receptor (TFRC) in LF. Lipid reactive oxygen species (ROS) level was analyzed by flow cytometry. FerroOrange staining was used to measure intracellular iron level. Luciferase reporter assay was adopted to confirm the binding of miR-222 and TFRC. Real-time quantitative PCR and immunoblots were applied to analyze gene and protein expression. The results showed that supplementation of exosomes derived from HBV-infected LO2 cells remarkably enhanced LX-2 cell activation, evidenced by elevated hydroxyprolin (Hyp) secretion and α-SMA and COL1A2 expression. miR-222 was significantly increased in HBV-Exo. Overexpressing miR-222 upregulated cell viability, secretion of Hpy, and expression of α-SMA and COL1A2, which were all blocked by overexpression of TFRC. Further study showed that TFRC was a target of miR-222, and miR-222 promoted LX-2 cell activation through suppressing TFRC-induced ferroptosis in LX-2 cells. Exosomal miR-222 derived from HBV-infected hepatocytes promoted LF through inhibiting TFRC and TFRC-induced ferroptosis. This study emphasizes the significance of miR-222/TFRC axis in LF and suggests new insights in clinical decision making while treating LF.

Graphical abstract

Exosomes derived from HBV-infected LO2 cells promote LX-2 cell activation and liver fibrosis in mouse

Exosomal miR-222 derived from HBV-infected LO2 cells promotes LX-2 cell activation

TFRC is a target of miR-222 and inhibits LX-2 cell activation induced by miR-222

miR-222 promotes LX-2 cell activation through inhibiting TFRC-induced ferroptosis

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The authors confirm the availability of all data generated or analyzed in this manuscript.

Code availability

Not applicable.

References

  • Abdel-Al A, El-Ahwany E, Zoheiry M, Hassan M, Ouf A, Abu-Taleb H, Abdel Rahim A, El-Talkawy MD, Zada S. miRNA-221 and miRNA-222 are promising biomarkers for progression of liver fibrosis in HCV Egyptian patients. Virus Res. 2018;253:135–9.

    Article  CAS  PubMed  Google Scholar 

  • Alim, I., Caulfield, J.T., Chen, Y., Swarup, V., Geschwind, D.H., Ivanova, E., Seravalli, J., Ai, Y., Sansing, L.H., Ste Marie, E.J., Hondal, R.J., Mukherjee, S., Cave, J.W., Sagdullaev, B.T., Karuppagounder, S.S., and Ratan, R.R. (2019). Selenium drives a transcriptional adaptive program to block ferroptosis and treat stroke. Cell 177, 1262–1279 e1225.

  • Arzberger S, Hosel M, Protzer U. Apoptosis of hepatitis B virus-infected hepatocytes prevents release of infectious virus. J Virol. 2010;84:11994–2001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Azmi AS, Bao B, Sarkar FH. Exosomes in cancer development, metastasis, and drug resistance: a comprehensive review. Cancer Metastasis Rev. 2013;32:623–42.

    Article  CAS  PubMed  Google Scholar 

  • Basu A, Saito K, Meyer K, Ray RB, Friedman SL, Chang YH, Ray R. Stellate cell apoptosis by a soluble mediator from immortalized human hepatocytes. Apoptosis. 2006;11:1391–400.

    Article  CAS  PubMed  Google Scholar 

  • Bataller R, Brenner DA. Liver fibrosis. J Clin Invest. 2005;115:209–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen L, Charrier A, Zhou Y, Chen R, Yu B, Agarwal K, Tsukamoto H, Lee LJ, Paulaitis ME, Brigstock DR. Epigenetic regulation of connective tissue growth factor by MicroRNA-214 delivery in exosomes from mouse or human hepatic stellate cells. Hepatology. 2014;59:1118–29.

    Article  CAS  PubMed  Google Scholar 

  • Dai X, Chen C, Xue J, Xiao T, Mostofa G, Wang D, Chen X, Xu H, Sun Q, Li J, Wei Y, Chen F, Quamruzzaman Q, Zhang A, Liu Q. Exosomal MALAT1 derived from hepatic cells is involved in the activation of hepatic stellate cells via miRNA-26b in fibrosis induced by arsenite. Toxicol Lett. 2019;316:73–84.

    Article  CAS  PubMed  Google Scholar 

  • Devhare, P.B., Sasaki, R., Shrivastava, S., Di Bisceglie, A.M., Ray, R., and Ray, R.B. (2017). Exosome-mediated intercellular communication between hepatitis C virus-infected hepatocytes and hepatic stellate cells. J Virol 91.

  • Ding S, Huang H, Xu Y, Zhu H, Zhong C. MiR-222 in cardiovascular diseases: physiology and pathology. Biomed Res Int. 2017;2017:4962426.

    Article  PubMed  PubMed Central  Google Scholar 

  • Dong R, Zheng Y, Chen G, Zhao R, Zhou Z, Zheng S. miR-222 overexpression may contribute to liver fibrosis in biliary atresia by targeting PPP2R2A. J Pediatr Gastroenterol Nutr. 2015;60:84–90.

    Article  CAS  PubMed  Google Scholar 

  • Enomoto Y, Takagi R, Naito Y, Kiniwa T, Tanaka Y, Hamada-Tsutsumi S, Kawano M, Matsushita S, Ochiya T, Miyajima A. Identification of the novel 3’ UTR sequences of human IL-21 mRNA as potential targets of miRNAs. Sci Rep. 2017;7:7780.

  • Fang X, Wang H, Han D, Xie E, Yang X, Wei J, Gu S, Gao F, Zhu N, Yin X, Cheng Q, Zhang P, Dai W, Chen J, Yang F, Yang HT, Linkermann A, Gu W, Min J, Wang F. Ferroptosis as a target for protection against cardiomyopathy. Proc Natl Acad Sci U S A. 2019;116:2672–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Friedman SL. Hepatic stellate cells: protean, multifunctional, and enigmatic cells of the liver. Physiol Rev. 2008;88:125–72.

    Article  CAS  PubMed  Google Scholar 

  • Galardi S, Mercatelli N, Farace MG, Ciafre SA. NF-kB and c-Jun induce the expression of the oncogenic miR-221 and miR-222 in prostate carcinoma and glioblastoma cells. Nucleic Acids Res. 2011;39:3892–902.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao M, Monian P, Quadri N, Ramasamy R, Jiang X. Glutaminolysis and Transferrin Regulate Ferroptosis. Mol Cell. 2015;59:298–308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang X, Jiang L, Shan A, Su Y, Cheng Y, Song D, Ji H, Ning G, Wang W, Cao Y. Targeting hepatic miR-221/222 for therapeutic intervention of nonalcoholic steatohepatitis in mice. EBioMedicine. 2018;37:307–21.

    Article  PubMed  PubMed Central  Google Scholar 

  • Jiang XP, Elliott RL, Head JF. Manipulation of iron transporter genes results in the suppression of human and mouse mammary adenocarcinomas. Anticancer Res. 2010;30:759–65.

    CAS  PubMed  Google Scholar 

  • Kalluri, R., and Lebleu, V.S. (2020). The biology, function, and biomedical applications of exosomes. Science 367.

  • Kong Z, Liu R, Cheng Y. Artesunate alleviates liver fibrosis by regulating ferroptosis signaling pathway. Biomed Pharmacother. 2019;109:2043–53.

    Article  CAS  PubMed  Google Scholar 

  • Kuo CY, Chiu V, Hsieh PC, Huang CY, Huang SJ, Tzeng IS, Tsai FM, Chen ML, Liu CT, Chen YR. Chrysophanol attenuates hepatitis B virus X protein-induced hepatic stellate cell fibrosis by regulating endoplasmic reticulum stress and ferroptosis. J Pharmacol Sci. 2020;144:172–82.

    Article  CAS  PubMed  Google Scholar 

  • Li X, Duan L, Yuan S, Zhuang X, Qiao T, He J. Ferroptosis inhibitor alleviates radiation-induced lung fibrosis (RILF) via down-regulation of TGF-beta1. J Inflamm (lond). 2019;16:11.

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Jin C, Shen M, Wang Z, Tan S, Chen A, Wang S, Shao J, Zhang F, Zhang Z, Zheng S. Iron regulatory protein 2 is required for artemether -mediated anti-hepatic fibrosis through ferroptosis pathway. Free Radic Biol Med. 2020;160:845–59.

    Article  CAS  PubMed  Google Scholar 

  • Maciotta S, Meregalli M, Torrente Y. The involvement of microRNAs in neurodegenerative diseases. Front Cell Neurosci. 2013;7:265.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mashouri L, Yousefi H, Aref AR, Ahadi AM, Molaei F, Alahari SK. Exosomes: composition, biogenesis, and mechanisms in cancer metastasis and drug resistance. Mol Cancer. 2019;18:75.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mathivanan S, Ji H, Simpson RJ. Exosomes: extracellular organelles important in intercellular communication. J Proteomics. 2010;73:1907–20.

    Article  CAS  PubMed  Google Scholar 

  • O'brien, J., Hayder, H., Zayed, Y., and Peng, C. (2018). Overview of MicroRNA Biogenesis, Mechanisms of Actions, and Circulation. Front Endocrinol (Lausanne) 9, 402.

  • Peng Y, Croce CM. The role of MicroRNAs in human cancer. Signal Transduct Target Ther. 2016;1:15004.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sasaki, R., Kanda, T., Nakamura, M., Nakamoto, S., Haga, Y., Wu, S., Shirasawa, H., and Yokosuka, O. (2016). Possible involvement of hepatitis B virus infection of hepatocytes in the attenuation of apoptosis in hepatic stellate cells. PLoS One 11, e0146314.

  • Sato-Kuwabara Y, Melo SA, Soares FA, Calin GA. The fusion of two worlds: non-coding RNAs and extracellular vesicles–diagnostic and therapeutic implications (Review). Int J Oncol. 2015;46:17–27.

    Article  CAS  PubMed  Google Scholar 

  • Schoenfeld JD, Sibenaller ZA, Mapuskar KA, Wagner BA, Cramer-Morales KL, Furqan M, Sandhu S, Carlisle TL, Smith MC, Abu Hejleh T, Berg DJ, Zhang J, Keech J, Parekh KR, Bhatia S, Monga V, Bodeker KL, Ahmann L, Vollstedt S, Brown H, Kauffman EPS, Schall ME, Hohl RJ, Clamon GH, Greenlee JD, Howard MA, Schultz MK, Smith BJ, Riley DP, Domann FE, Cullen JJ, Buettner GR, Buatti JM, Spitz DR, Allen BG. O2(-) and H2O2-mediated disruption of Fe metabolism causes the differential susceptibility of NSCLC and GBM cancer cells to pharmacological ascorbate. Cancer Cell. 2017;32:268.

    Article  CAS  PubMed  Google Scholar 

  • Seo W, Eun HS, Kim SY, Yi HS, Lee YS, Park SH, Jang MJ, Jo E, Kim SC, Han YM, Park KG, Jeong WI. Exosome-mediated activation of toll-like receptor 3 in stellate cells stimulates interleukin-17 production by gammadelta T cells in liver fibrosis. Hepatology. 2016;64:616–31.

    Article  CAS  PubMed  Google Scholar 

  • Shen Y, Li X, Dong D, Zhang B, Xue Y, Shang P. Transferrin receptor 1 in cancer: a new sight for cancer therapy. Am J Cancer Res. 2018;8:916–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Walter SR, Thein HH, Gidding HF, Amin J, Law MG, George J, Dore GJ. Risk factors for hepatocellular carcinoma in a cohort infected with hepatitis B or C. J Gastroenterol Hepatol. 2011;26:1757–64.

    Article  PubMed  Google Scholar 

  • Wang L, Zhang Z, Li M, Wang F, Jia Y, Zhang F, Shao J, Chen A, Zheng S. P53-dependent induction of ferroptosis is required for artemether to alleviate carbon tetrachloride-induced liver fibrosis and hepatic stellate cell activation. IUBMB Life. 2019;71:45–56.

    Article  CAS  PubMed  Google Scholar 

  • Xie H, Xie D, Zhang J, Jin W, Li Y, Yao J, Pan Z, Xie D. ROS/NF-kappaB signaling pathway-mediated transcriptional activation of TRIM37 promotes HBV-associated hepatic fibrosis. Mol Ther Nucleic Acids. 2020;22:114–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yapali S, Talaat N, Lok AS. Management of hepatitis B: our practice and how it relates to the guidelines. Clin Gastroenterol Hepatol. 2014;12:16–26.

    Article  PubMed  Google Scholar 

  • Yu F, Zheng J, Mao Y, Dong P, Lu Z, Li G, Guo C, Liu Z, Fan X. Long non-coding RNA growth arrest-specific transcript 5 (GAS5) inhibits liver fibrogenesis through a mechanism of competing endogenous RNA. J Biol Chem. 2015;290:28286–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang HG, Grizzle WE. Exosomes: a novel pathway of local and distant intercellular communication that facilitates the growth and metastasis of neoplastic lesions. Am J Pathol. 2014;184:28–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Z, Guo M, Li Y, Shen M, Kong D, Shao J, Ding H, Tan S, Chen A, Zhang F, Zheng S. RNA-binding protein ZFP36/TTP protects against ferroptosis by regulating autophagy signaling pathway in hepatic stellate cells. Autophagy. 2020a;16:1482–505.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, Z., Guo, M., Shen, M., Kong, D., Zhang, F., Shao, J., Tan, S., Wang, S., Chen, A., Cao, P., and Zheng, S. (2020b). The BRD7-P53-SLC25A28 axis regulates ferroptosis in hepatic stellate cells. Redox Biol 36, 101619.

  • Zhou, J., Lan, Q., Li, W., Yang, L., You, J., Zhang, Y.M., and Ni, W. (2019). Tripartite motif protein 52 (TRIM52) promoted fibrosis in LX-2 cells through PPM1A-mediated Smad2/3 pathway. Cell Biol Int.

  • Zhou SS, Jin JP, Wang JQ, Zhang ZG, Freedman JH, Zheng Y, Cai L. miRNAS in cardiovascular diseases: potential biomarkers, therapeutic targets and challenges. Acta Pharmacol Sin. 2018;39:1073–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was supported by the National Science and Technology Major Project of China (2017ZX10202203-007-005), National Natural Science Foundation of China (81600479 and 81670548), and Wang Baoen liver fibrosis research fund (2020013).

Author information

Authors and Affiliations

Authors

Contributions

Qidi Zhang and Lungen Lu conceived this study. Ying Qu, Qingqing Zhang, Fei Li, Binghang Li, Zhenghong Li, and Yuwei Dong performed the experiments, collected the data, and performed the data analysis. Xiaobo Cai and Ying Qu wrote the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Lungen Lu or Xiaobo Cai.

Ethics declarations

Competing interests

The authors declare that they have no conflict of interest.

Ethics approval

The study had approval from the Ethics Committee of Shanghai General Hospital and was conducted in accordance with the Declaration of Helsinki. The animal study was approved by the IACUC and the Ethics Committee of Shanghai General Hospital.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 482 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Q., Qu, Y., Zhang, Q. et al. Exosomes derived from hepatitis B virus-infected hepatocytes promote liver fibrosis via miR-222/TFRC axis. Cell Biol Toxicol 39, 467–481 (2023). https://doi.org/10.1007/s10565-021-09684-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10565-021-09684-z

Keywords

Navigation