Skip to main content
Log in

Spermine protects alpha-synuclein expressing dopaminergic neurons from manganese-induced degeneration

  • Original Article
  • Published:
Cell Biology and Toxicology Aims and scope Submit manuscript

Abstract

Manganese exposure is among the many environmental risk factors linked to the progression of neurodegenerative diseases, such as manganese-induced parkinsonism. In animal models, chronic exposure to manganese causes loss of cell viability, neurodegeneration, and functional deficits. Polyamines, such as spermine, have been shown to rescue animals from age-induced neurodegeneration in an autophagy-dependent manner; nonetheless, it is not understood whether polyamines can prevent manganese-induced toxicity. In this study, we used two model systems, the Caenorhabditis elegans UA44 strain and SK-MEL-28 cells, both expressing the protein alpha-synuclein (α-syn) to determine whether spermine could ameliorate manganese-induced toxicity. Manganese caused a substantial reduction in the viability of SK-MEL-28 cells and hastened neurodegeneration in the UA44 strain. Spermine protected both the SK-MEL-28 cells and the UA44 strain from manganese-induced toxicity. Spermine also reduced the age-associated neurodegeneration observed in the UA44 strain compared with a control strain without α-syn expression and led to improved avoidance behavior in a functional assay. Treatment with berenil, an inhibitor of polyamine catabolism, which leads to increased intracellular polyamine levels, also showed similar cellular protection against manganese toxicity. While both translation blocker cycloheximide and autophagy blocker chloroquine caused a reduction in the cytoprotective effect of spermine, transcription blocker actinomycin D had no effect. This study provides new insights on the effect of spermine in preventing manganese-induced toxicity, which is most likely via translational regulation of several candidate genes, including those of autophagy. Thus, our results indicate that polyamines positively influence neuronal health, even when exposed to high levels of manganese and α-syn, and supplementing polyamines through diet might delay the onset of diseases involving degeneration of dopaminergic neurons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Allen SJ, Watson JJ, Shoemark DK, Barua NU, Patel NK. GDNF, NGF and BDNF as therapeutic options for neurodegeneration. Pharmacol Ther. 2013;138:155–75.

    Article  CAS  PubMed  Google Scholar 

  • Anderson JG, Cooney PT, Erikson KM. Inhibition of DAT function attenuates manganese accumulation in the globus pallidus. Environ Toxicol Pharmacol. 2007;23:179–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Angeli S, Barhydt T, Jacobs R, Killilea DW, Lithgow GJ, Andersen JK. Manganese disturbs metal and protein homeostasis in Caenorhabditis elegans. Metallomics. 2014;6:1816–23.

    Article  CAS  PubMed  Google Scholar 

  • Assimakopoulos SF, Konstantinou D, Georgiou C, Chroni E. Metabolism of polyamines and oxidative stress in the brain of cholestatic rats. Amino Acids. 2010;38:973–4.

    Article  CAS  PubMed  Google Scholar 

  • Aydemir TB, Kim MH, Kim J, Colon-Perez LM, Banan G, Mareci TH, et al. Metal transporter Zip14 (Slc39a14) deletion in mice increases manganese deposition and produces neurotoxic signatures and diminished motor activity. J Neurosci. 2017;37:5996–6006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beck G, Munno DW, Levy Z, Dissel HM, van-Minnen J, Syed NI, et al. Neurotrophic activities of trk receptors conserved over 600 million years of evolution. J Neurobiol. 2004;60:12–20.

    Article  CAS  PubMed  Google Scholar 

  • Bendor JT, Logan TP, Edwards RH. The function of α-synuclein. Neuron. 2013;79:1044–66.

    Article  CAS  PubMed  Google Scholar 

  • Benedetto A, Au C, Avila DS, Milatovic D, Aschner M. Extracellular dopamine potentiates Mn-induced oxidative stress, lifespan reduction, and dopaminergic neurodegeneration in a BLI-3–dependent manner in Caenorhabditis elegans. PLoS Genet. 2010;6:e1001084.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bowman AB, Kwakye GF, Herrero Hernández E, Aschner M. Role of manganese in neurodegenerative diseases. J Trace Elem Med Biol. 2011;25:191–203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brouillet EP, Shinobu L, McGarvey U, Hochberg F, Beal MF. Manganese injection into the rat striatum produces excitotoxic lesions by impairing energy metabolism. Exp Neurol. 1993;120:89–94.

    Article  CAS  PubMed  Google Scholar 

  • Büttner S, Broeskamp F, Sommer C, Markaki M, Habernig L, Alavian-Ghavanini A, et al. Spermidine protects against α-synuclein neurotoxicity. Cell Cycle. 2014;13:3903–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cai T, Yao T, Zheng G, Chen Y, Du K, Cao Y, et al. Manganese induces the overexpression of α-synuclein in PC12 cells via ERK activation. Brain Res. 2010;1359:201–7.

    Article  CAS  PubMed  Google Scholar 

  • Carboni E, Lingor P. Insights on the interaction of alpha-synuclein and metals in the pathophysiology of Parkinson’s disease. Metallomics. 2015;7:395–404.

    Article  CAS  PubMed  Google Scholar 

  • Clarkson AN, Liu H, Pearson L, Kapoor M, Harrison JC, Sammut IA, et al. Neuroprotective effects of spermine following hypoxic-ischemic-induced brain damage: a mechanistic study. FASEB J. 2004;18:1114–6.

    Article  CAS  PubMed  Google Scholar 

  • Di Fonzo A, Chien HF, Socal M, Giraudo S, Tassorelli C, Iliceto G, et al. ATP13A2 missense mutations in juvenile parkinsonism and young onset Parkinson disease. Neurology. 2007;68:1557–62.

    Article  CAS  PubMed  Google Scholar 

  • Eisenberg T, Knauer H, Schauer A, Büttner S, Ruckenstuhl C, Carmona-Gutierrez D, et al. Induction of autophagy by spermidine promotes longevity. Nat Cell Biol. 2009;11:1305–14.

    Article  CAS  PubMed  Google Scholar 

  • Fernsebner K, Zorn J, Kanawati B, Walker A, Michalke B. Manganese leads to an increase in markers of oxidative stress as well as to a shift in the ratio of Fe(II)/(III) in rat brain tissue. Metallomics. 2014;6:921–31.

    Article  CAS  PubMed  Google Scholar 

  • Fitsanakis VA, Zhang N, Anderson JG, Erikson KM, Avison MJ, Gore JC, et al. Measuring brain manganese and iron accumulation in rats following 14 weeks of low-dose manganese treatment using atomic absorption spectroscopy and magnetic resonance imaging. Toxicol Sci. 2008;103:116–24.

    Article  CAS  PubMed  Google Scholar 

  • Frühauf PKS, Porto Ineu R, Tomazi L, Duarte T, Mello CF, Rubin MA. Spermine reverses lipopolysaccharide-induced memory deficit in mice. J Neuroinflammation. 2015;12:3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frühauf-Perez PK, Temp FR, Pillat MM, Signor C, Wendel AL, Ulrich H, et al. Spermine protects from LPS-induced memory deficit via BDNF and TrkB activation. Neurobiol Learn Mem. 2018;149:135–43.

    Article  CAS  PubMed  Google Scholar 

  • Fukushima T, Tan X, Luo Y, Kanda H. Relationship between blood levels of heavy metals and Parkinson’s disease in China. Neuroepidemiology. 2010;34:18–24.

    Article  PubMed  Google Scholar 

  • Gavin CE, Gunter KK, Gunter TE. Manganese and calcium transport in mitochondria: implications for manganese toxicity. Neurotoxicology. 1999;20:445–53.

    CAS  PubMed  Google Scholar 

  • Gitler AD, Chesi A, Geddie ML, Strathearn KE, Hamamichi S, Hill KJ, et al. α-Synuclein is part of a diverse and highly conserved interaction network that includes PARK9 and manganese toxicity. Nat Genet. 2009;41:308–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gorell JM, Johnson CC, Rybicki BA, Peterson EL, Kortsha GX, Brown GG, et al. Occupational exposure to manganese, copper, lead, iron, mercury and zinc and the risk of Parkinson’s disease. Neurotoxicology. 1999;20:239–47.

    CAS  PubMed  Google Scholar 

  • Guilarte TR. Manganese neurotoxicity: new perspectives from behavioral, neuroimaging, and neuropathological studies in humans and non-human primates. Front Aging Neurosci. 2013;5:23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta VK, Scheunemann L, Eisenberg T, Mertel S, Bhukel A, Koemans TS, et al. Restoring polyamines protects from age-induced memory impairment in an autophagy-dependent manner. Nat Neurosci. 2013;16:1453–60.

    Article  CAS  PubMed  Google Scholar 

  • Harrington AJ, Hamamichi S, Caldwell GA, Caldwell KA. C. elegans as a model organism to investigate molecular pathways involved with Parkinson’s disease. Dev Dyn. 2010;239:1282–95.

    Article  CAS  PubMed  Google Scholar 

  • Harrington AJ, Knight AL, Caldwell GA, Caldwell KA. Caenorhabditis elegans as a model system for identifying effectors of α-synuclein misfolding and dopaminergic cell death associated with Parkinson’s disease. Methods. 2011;53:220–5.

    Article  CAS  PubMed  Google Scholar 

  • Hilliard MA, Bargmann CI, Bazzicalupo P. C. elegans responds to chemical repellents by integrating sensory inputs from the head and the tail. Curr Biol. 2002;12:730–4.

    Article  CAS  PubMed  Google Scholar 

  • Horning KJ, Caito SW, Tipps KG, Bowman AB, Aschner M. Manganese is essential for neuronal health. Annu Rev Nutr. 2015;35:71–108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Igarashi K, Kashiwagi K. Modulation of cellular function by polyamines. Int J Biochem Cell Biol. 2010;42:39–51.

    Article  CAS  PubMed  Google Scholar 

  • Kang SS, Zhang Z, Liu X, Manfredsson FP, Benskey MJ, Cao X, et al. TrkB neurotrophic activities are blocked by α-synuclein, triggering dopaminergic cell death in Parkinson’s disease. Proc Natl Acad Sci U S A. 2017;114:10773–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaur G, Kumar V, Arora A, Tomar A, Ashish SR, et al. Affected energy metabolism under manganese stress governs cellular toxicity. Sci Rep. 2017;7:11645.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krüger A, Vowinckel J, Mülleder M, Grote P, Capuano F, Bluemlein K, et al. Tpo1-mediated spermine and spermidine export controls cell cycle delay and times antioxidant protein expression during the oxidative stress response. EMBO Rep. 2013;14:1113–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kwakye GF, Paoliello MMB, Mukhopadhyay S, Bowman AB, Aschner M. Manganese-induced parkinsonism and Parkinson’s disease: shared and distinguishable features. Int J Environ Res Public Health. 2015;12:7519–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lechpammer M, Clegg MS, Muzar Z, Huebner PA, Jin L-W, Gospe SM. Pathology of inherited manganese transporter deficiency. Ann Neurol. 2014;75:608–12.

    Article  CAS  PubMed  Google Scholar 

  • Lee BR, Matsuo Y, Cashikar AG, Kamitani T. Role of Ser129 phosphorylation of α-synuclein in melanoma cells. J Cell Sci. 2013;126:696–704.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lewandowski NM, Ju S, Verbitsky M, Ross B, Geddie ML, Rockenstein E, et al. Polyamine pathway contributes to the pathogenesis of Parkinson disease. Proc Natl Acad Sci U S A. 2010;107:16970–5.

    Article  PubMed  PubMed Central  Google Scholar 

  • Leyva-Illades D, Chen P, Zogzas CE, Hutchens S, Mercado JM, Swaim CD, et al. SLC30A10 is a cell surface-localized manganese efflux transporter, and parkinsonism-causing mutations block its intracellular trafficking and efflux activity. J Neurosci. 2014;34:14079–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Y, Sun L, Cai T, Zhang Y, Lv S, Wang Y, et al. α-Synuclein overexpression during manganese-induced apoptosis in SH-SY5Y neuroblastoma cells. Brain Res Bull. 2010;81:428–33.

    Article  CAS  PubMed  Google Scholar 

  • Lucchini RG, Martin CJ, Doney BC. From manganism to manganese-induced parkinsonism: a conceptual model based on the evolution of exposure. NeuroMolecular Med. 2009;11:311–21.

    Article  CAS  PubMed  Google Scholar 

  • Mandal S, Mandal A, Johansson HE, Orjalo AV, Park MH. Depletion of cellular polyamines, spermidine and spermine, causes a total arrest in translation and growth in mammalian cells. Proc Natl Acad Sci. 2013;110:2169–74.

    Article  PubMed  PubMed Central  Google Scholar 

  • Miller-Fleming L, Olin-Sandoval V, Campbell K, Ralser M. Remaining mysteries of molecular biology: the role of polyamines in the cell. J Mol Biol. 2015;427:3389–406.

    Article  CAS  PubMed  Google Scholar 

  • Minois N, Carmona-Gutierrez D, Bauer MA, Rockenfeller P, Eisenberg T, Brandhorst S, et al. Spermidine promotes stress resistance in Drosophila melanogaster through autophagy-dependent and -independent pathways. Cell Death Dis. 2012;3:e401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Minois N, Rockenfeller P, Smith TK, Carmona-Gutierrez D. Spermidine feeding decreases age-related locomotor activity loss and induces changes in lipid composition. PLoS One. 2014;9:e102435.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morselli E, Mariño G, Bennetzen MV, Eisenberg T, Megalou E, Schroeder S, et al. Spermidine and resveratrol induce autophagy by distinct pathways converging on the acetylproteome. J Cell Biol. 2011;192:615–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moussaud S, Jones DR, Moussaud-Lamodière EL, Delenclos M, Ross OA, McLean PJ. Alpha-synuclein and tau: teammates in neurodegeneration? Mol Neurodegener. 2014;9:43.

    Article  PubMed  PubMed Central  Google Scholar 

  • Nandakumar S, Vijayan B, Kishore A, Thekkuveettil A. Autophagy enhancement is rendered ineffective in presence of α-synuclein in melanoma cells. J Cell Commun Signal. 2017;11:381–4.

    Article  PubMed  PubMed Central  Google Scholar 

  • Nishimura K, Okudaira H, Ochiai E, Higashi K, Kaneko M, Ishii I, et al. Identification of proteins whose synthesis is preferentially enhanced by polyamines at the level of translation in mammalian cells. Int J Biochem Cell Biol. 2009;41:2251–61.

    Article  CAS  PubMed  Google Scholar 

  • Noro T, Namekata K, Azuchi Y, Kimura A, Guo X, Harada C, et al. Spermidine ameliorates neurodegeneration in a mouse model of normal tension glaucoma. Invest Ophthalmol Vis Sci. 2015;56:5012–9.

    Article  CAS  PubMed  Google Scholar 

  • Park J-S, Blair NF, Sue CM. The role of ATP13A2 in Parkinson’s disease: clinical phenotypes and molecular mechanisms. Mov Disord. 2015;30:770–9.

    Article  CAS  PubMed  Google Scholar 

  • Peneder TM, Scholze P, Berger ML, Reither H, Heinze G, Bertl J, et al. Chronic exposure to manganese decreases striatal dopamine turnover in human alpha-synuclein transgenic mice. Neuroscience. 2011;180:280–92.

    Article  CAS  PubMed  Google Scholar 

  • Peres TV, Parmalee NL, Martinez-Finley EJ, Aschner M. Untangling the manganese-α-synuclein web. Front Neurosci. 2016;10(364).

  • Perez-Leal O, Barrero CA, Clarkson AB, Casero RA, Merali S. Polyamine-regulated translation of spermidine/spermine-N1-acetyltransferase. Mol Cell Biol. 2012;32:1453–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perl DP, Olanow CW. The neuropathology of manganese-induced parkinsonism. J Neuropathol Exp Neurol. 2007;66:675–82.

    Article  CAS  PubMed  Google Scholar 

  • Pifl C, Khorchide M, Kattinger A, Reither H, Hardy J, Hornykiewicz O. α-Synuclein selectively increases manganese-induced viability loss in SK-N-MC neuroblastoma cells expressing the human dopamine transporter. Neurosci Lett. 2004;354:34–7.

    Article  CAS  PubMed  Google Scholar 

  • Pucciarelli S, Moreschini B, Micozzi D, De Fronzo GS, Carpi FM, Polzonetti V, et al. Spermidine and spermine are enriched in whole blood of nona/centenarians. Rejuvenation Res. 2012;15:590–5.

    Article  CAS  PubMed  Google Scholar 

  • Pupyshev AB, Korolenko TA, Akopyan AA, Amstislavskaya TG, Tikhonova MA. Suppression of autophagy in the brain of transgenic mice with overexpression of А53Т-mutant α-synuclein as an early event at synucleinopathy progression. Neurosci Lett. 2018;672:140–4.

    Article  CAS  PubMed  Google Scholar 

  • Quadri M, Federico A, Zhao T, Breedveld GJ, Battisti C, Delnooz C, et al. Mutations in SLC30A10 cause parkinsonism and dystonia with hypermanganesemia, polycythemia, and chronic liver disease. Am J Hum Genet. 2012;90:467–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rigobello MP, Toninello A, Siliprandi D, Bindoli A. Effect of spermine on mitochondrial glutathione release. Biochem Biophys Res Commun. 1993;194:1276–81.

    Article  CAS  PubMed  Google Scholar 

  • Robison G, Sullivan B, Cannon JR, Pushkar Y. Identification of dopaminergic neurons of the substantia nigra pars compacta as a target of manganese accumulation. Metallomics. 2015;7:748–55.

    Article  CAS  PubMed  Google Scholar 

  • Sakamoto A, Terui Y, Yoshida T, Yamamoto T, Suzuki H, Yamamoto K, et al. Three members of polyamine modulon under oxidative stress conditions: two transcription factors (SoxR and EmrR) and a glutathione synthetic enzyme (GshA). PLoS One. 2015;10:e0124883.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sava IG, Battaglia V, Rossi CA, Salvi M, Toninello A. Free radical scavenging action of the natural polyamine spermine in rat liver mitochondria. Free Radic Biol Med. 2006;41:1272–81.

    Article  CAS  PubMed  Google Scholar 

  • Settivari R, Levora J, Nass R. The divalent metal transporter homologues SMF-1/2 mediate dopamine neuron sensitivity in caenorhabditis elegans models of manganism and parkinson disease. J Biol Chem. 2009;284:35758–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stanwood GD, Leitch DB, Savchenko V, Wu J, Fitsanakis VA, Anderson DJ, et al. Manganese exposure is cytotoxic and alters dopaminergic and GABAergic neurons within the basal ganglia. J Neurochem. 2009;110:378–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stiernagle T. Maintenance of C. elegans. WormBook [Internet]. 2006 [cited 2018 May 29]; Available from: http://www.wormbook.org/chapters/www_strainmaintain/strainmaintain.html.

  • Stredrick DL, Stokes AH, Worst TJ, Freeman WM, Johnson EA, Lash LH, et al. Manganese-induced cytotoxicity in dopamine-producing cells. Neurotoxicology. 2004;25:543–53.

    Article  CAS  PubMed  Google Scholar 

  • Strober W. Trypan blue exclusion test of cell viability. Curr Protoc Immunol. John Wiley & Sons, Inc.; 2001. Available from: http://onlinelibrary.wiley.com/doi/10.1002/0471142735.ima03bs21/abstract.

  • Tuschl K, Clayton PT, Gospe SM, Gulab S, Ibrahim S, Singhi P, et al. Syndrome of hepatic cirrhosis, dystonia, polycythemia, and hypermanganesemia caused by mutations in SLC30A10, a manganese transporter in man. Am J Hum Genet. 2012;90:457–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vivó M, de Vera N, Cortés R, Mengod G, Camón L, Martínez E. Polyamines in the basal ganglia of human brain. Influence of aging and degenerative movement disorders. Neurosci Lett. 2001;304:107–11.

    Article  PubMed  Google Scholar 

  • Winslow AR, Chen C-W, Corrochano S, Acevedo-Arozena A, Gordon DE, Peden AA, et al. α-Synuclein impairs macroautophagy: implications for Parkinson’s disease. J Cell Biol. 2010;190:1023–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ye Q, Park JE, Gugnani K, Betharia S, Pino-Figueroa A, Kim J. Influence of iron metabolism on manganese transport and toxicity. Metallomics. 2017;9:1028–46.

    Article  CAS  PubMed  Google Scholar 

  • Zondler L, Kostka M, Garidel P, Heinzelmann U, Hengerer B, Mayer B, et al. Proteasome impairment by α-synuclein. PLoS One. 2017;12:e0184040.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Dr. Santhoshkumar T R of Rajiv Gandhi Centre for Biotechnology, Trivandrum, for providing us the SK-MEL-28 cell line. We are grateful to Aswathy A Rejani and Rasitha S Kanakalatha for technical help with the C. elegans experiments.

Funding

This work was supported by SCTIMST, Thiruvananthapuram, Kerala, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anoopkumar Thekkuveettil.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Asha Kishore and Anoopkumar Thekkuveettil both authors shared equal responsibilities

Electronic supplementary material

Fig. S1

Pattern of expression and localization of α-syn in SK-MEL-28 cells (representative images). Scale bar is 100 μM. α-syn, α-synuclein. (PNG 218 kb)

High resolution image (TIF 4795 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vijayan, B., Raj, V., Nandakumar, S. et al. Spermine protects alpha-synuclein expressing dopaminergic neurons from manganese-induced degeneration. Cell Biol Toxicol 35, 147–159 (2019). https://doi.org/10.1007/s10565-018-09449-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10565-018-09449-1

Keywords

Navigation