Skip to main content
Log in

Influences of flavones on cell viability and cAMP-dependent steroidogenic gene regulation in MA-10 Leydig cells

  • Published:
Cell Biology and Toxicology Aims and scope Submit manuscript

Abstract

Testicular Leydig cells are major contributors of androgen synthesis and secretion, which play an important role in testis development, normal masculinization, maintenance of spermatogenesis, and general male fertility. The rate-limiting step in testosterone biosynthesis involves the transfer of cholesterol to the mitochondrial inner membrane by the steroidogenic acute regulatory (Star) protein, a critical factor in steroid hormone biosynthesis. Once inside the mitochondria, cholesterol is metabolized by the steroidogenic enzyme Cyp11a1 to pregnenolone, which is further converted to testosterone by the action of other steroidogenic enzymes. Interestingly, the Star protein level declines during Leydig cell aging, resulting in defective mitochondrial cholesterol transfer and lower testosterone production. It is possible to delay the age-related decline in testosterone production by increasing Star and/or Cyp11a1 gene expression using supplementation with flavonoids, a group of polyphenolic compounds widely distributed in fruits and vegetables. In this study, we examined whether the distribution of hydroxyl groups among flavones could influence their potency to stimulate steroidogenesis within Leydig cells. Low levels of apigenin, luteolin, chrysin, and baicalein (10 μM) stimulated cAMP-dependent Star, Cyp11a1, and Fdx1 promoters’ activation and may increase steroidogenesis within Leydig cells. Indeed, luteolin effectively increased cAMP-dependent accumulation of progesterone from MA-10 Leydig cells, possibly through activation of Star and Fdx1 transcription. Thus, dietary luteolin could be potentially effective to maintain steroid production within aging males.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

bp:

Base pair

cAMP:

Cyclic adenosine monophosphate

Cebp:

CCAAT/enhancer binding protein

Cox2:

Cyclooxygenase-2

Creb:

cAMP response element binding protein

Cyp11a1:

Cholesterol side-chain cleavage enzyme

ELISA:

Enzyme-linked immunosorbent assay

Dax1:

Dosage-sensitive sex reversal, adrenal hypoplasia critical region, on chromosome X, gene 1

Fdx1:

Ferredoxin 1

FSK:

Forskolin

LH:

Luteinizing hormone

NFkB:

Nuclear factor kappa B

PKA:

Protein kinase A

Star:

Steroidogenic acute regulatory protein

References

  • Ascoli M. Characterization of several clonal lines of cultured Leydig tumor cells: gonadotropin receptors and steroidogenic responses. Endocrinology. 1981;108(1):88–95.

    Article  CAS  PubMed  Google Scholar 

  • Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72:248–54.

    Article  CAS  PubMed  Google Scholar 

  • Cárdenas M, Marder M, Blank VC, Roguin LP. Antitumor activity of some natural flavonoids and synthetic derivatives on various human and murine cancer cell lines. Bioorg Med Chem. 2006;14(9):2966–71.

    Article  PubMed  Google Scholar 

  • Chen L-J, Games DE, Jones J. Isolation and identification of four flavonoid constituents from the seeds of Oroxylum indicum by high-speed counter-current chromatography. J Chromatogr A. 2003;988(1):95–105.

    Article  CAS  PubMed  Google Scholar 

  • Chen C-Y, Peng W-H, Tsai K-D, Hsu S-L. Luteolin suppresses inflammation-associated gene expression by blocking NF-kappaB and AP-1 activation pathway in mouse alveolar macrophages. Life Sci. 2007;81(23–24):1602–14.

    Article  CAS  PubMed  Google Scholar 

  • Choi EM, Lee YS. Luteolin suppresses IL-1beta-induced cytokines and MMPs production via p38 MAPK, JNK, NF-kappaB and AP-1 activation in human synovial sarcoma cell line, SW982. Food Chem Toxicol Int J Publ Br Ind Biol Res Assoc. 2010;48(10):2607–11.

    Article  CAS  Google Scholar 

  • Chun K-S, Surh Y-J. Signal transduction pathways regulating cyclooxygenase-2 expression: potential molecular targets for chemoprevention. Biochem Pharmacol. 2004;68(6):1089–100.

    Article  CAS  PubMed  Google Scholar 

  • Cohen PG. Aromatase, adiposity, aging and disease. The hypogonadal-metabolic-atherogenic-disease and aging connection. Med Hypotheses. 2001;56(6):702–8.

    Article  CAS  PubMed  Google Scholar 

  • Culty M, Luo L, Yao Z-X, Chen H, Papadopoulos V, Zirkin BR. Cholesterol transport, peripheral benzodiazepine receptor, and steroidogenesis in aging Leydig cells. J Androl. 2002;23(3):439–47.

    CAS  PubMed  Google Scholar 

  • Daigle M, Roumaud P, Martin LJ. Expressions of Sox9, Sox5, and Sox13 transcription factors in mice testis during postnatal development. Mol Cell Biochem. 2015;407(1–2):209–21.

    Article  CAS  PubMed  Google Scholar 

  • De Maddalena C, Vodo S, Petroni A, Aloisi AM. Impact of testosterone on body fat composition. J Cell Physiol. 2012;227(12):3744–8.

    Article  CAS  PubMed  Google Scholar 

  • Derby CA, Zilber S, Brambilla D, Morales KH, McKinlay JB. Body mass index, waist circumference and waist to hip ratio and change in sex steroid hormones: the Massachusetts Male Ageing Study. Clin Endocrinol. 2006;65(1):125–31.

    Article  CAS  Google Scholar 

  • Dhawan K, Kumar S, Sharma A. Beneficial effects of chrysin and benzoflavone on virility in 2-year-old male rats. J Med Food. 2002;5(1):43–8.

    Article  CAS  PubMed  Google Scholar 

  • Ferrándiz ML, Alcaraz MJ. Anti-inflammatory activity and inhibition of arachidonic acid metabolism by flavonoids. Agents Actions. 1991;32(3–4):283–8.

    Article  PubMed  Google Scholar 

  • Figueiroa MS, César Vieira JSB, Leite DS, Filho RCOA, Ferreira F, Gouveia PS, et al. Green tea polyphenols inhibit testosterone production in rat Leydig cells. Asian J. Androl. 2009;11(3):362–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ha SK, Moon E, Kim SY. Chrysin suppresses LPS-stimulated proinflammatory responses by blocking NF-κB and JNK activations in microglia cells. Neurosci Lett. 2010;485(3):143–7.

    Article  CAS  PubMed  Google Scholar 

  • Hu G-X, Zhao B-H, Chu Y-H, Zhou H-Y, Akingbemi BT, Zheng Z-Q, et al. Effects of genistein and equol on human and rat testicular 3beta-hydroxysteroid dehydrogenase and 17beta-hydroxysteroid dehydrogenase 3 activities. Asian J Androl. 2010;12(4):519–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hwang YP, Oh KN, Yun HJ, Jeong HG. The flavonoids apigenin and luteolin suppress ultraviolet A-induced matrix metalloproteinase-1 expression via MAPKs and AP-1-dependent signaling in HaCaT cells. J Dermatol Sci. 2011;61(1):23–31.

    Article  CAS  PubMed  Google Scholar 

  • Jana K, Yin X, Schiffer RB, Chen J-J, Pandey AK, Stocco DM, et al. Chrysin, a natural flavonoid enhances steroidogenesis and steroidogenic acute regulatory protein gene expression in mouse Leydig cells. J Endocrinol. 2008;197(2):315–23.

    Article  CAS  PubMed  Google Scholar 

  • Kao YC, Zhou C, Sherman M, Laughton CA, Chen S. Molecular basis of the inhibition of human aromatase (estrogen synthetase) by flavone and isoflavone phytoestrogens: a site-directed mutagenesis study. Environ Health Perspect. 1998;106(2):85–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karin M, Lin A. NF-kappaB at the crossroads of life and death. Nat Immunol. 2002;3(3):221–7

  • Kellis JT, Vickery LE. Inhibition of human estrogen synthetase (aromatase) by flavones. Science. 1984;225(4666):1032–4.

    Article  CAS  PubMed  Google Scholar 

  • Kilgore MW, Stocco DM. Initial characterization of a subclone of the MA-10 mouse Leydig tumor cell line. Endocrinology. 1989;124(3):1210–6.

    Article  CAS  PubMed  Google Scholar 

  • King SR, LaVoie HA. Gonadal transactivation of STARD1, CYP11A1 and HSD3B. Front Biosci Landmark Ed. 2012;17:824–46.

    Article  CAS  PubMed  Google Scholar 

  • Leers-Sucheta S, Stocco DM, Azhar S. Down-regulation of steroidogenic acute regulatory (StAR) protein in rat Leydig cells: implications for regulation of testosterone production during aging. Mech Ageing Dev. 1999;107(2):197–203.

    Article  CAS  PubMed  Google Scholar 

  • Li W, Pandey AK, Yin X, Chen J-J, Stocco DM, Grammas P, et al. Effects of apigenin on steroidogenesis and steroidogenic acute regulatory gene expression in mouse Leydig cells. J Nutr Biochem. 2011;22(3):212–8.

    Article  PubMed  PubMed Central  Google Scholar 

  • Liang YC, Huang YT, Tsai SH, Lin-Shiau SY, Chen CF, Lin JK. Suppression of inducible cyclooxygenase and inducible nitric oxide synthase by apigenin and related flavonoids in mouse macrophages. Carcinogenesis. 1999;20(10):1945–52.

    Article  CAS  PubMed  Google Scholar 

  • Lin D, Sugawara T, Strauss JF, Clark BJ, Stocco DM, Saenger P, et al. Role of steroidogenic acute regulatory protein in adrenal and gonadal steroidogenesis. Science. 1995;267(5205):1828–31.

    Article  CAS  PubMed  Google Scholar 

  • Liu C, Wu J, Gu J, Xiong Z, Wang F, Wang J, et al. Baicalein improves cognitive deficits induced by chronic cerebral hypoperfusion in rats. Pharmacol Biochem Behav. 2007;86(3):423–30.

    Article  CAS  PubMed  Google Scholar 

  • Liu C, Wu J, Xu K, Cai F, Gu J, Ma L, et al. Neuroprotection by baicalein in ischemic brain injury involves PTEN/AKT pathway. J Neurochem. 2010;112(6):1500–12.

    Article  CAS  PubMed  Google Scholar 

  • López-Lázaro M. Distribution and biological activities of the flavonoid luteolin. Mini Rev Med Chem. 2009;9(1):31–59.

    Article  PubMed  Google Scholar 

  • Manach C, Williamson G, Morand C, Scalbert A, Rémésy C. Bioavailability and bioefficacy of polyphenols in humans. I. Review of 97 bioavailability studies. Am J Clin Nutr. 2005;81(1 Suppl):230S–42S.

    CAS  PubMed  Google Scholar 

  • Manna PR, Dyson MT, Eubank DW, Clark BJ, Lalli E, Sassone-Corsi P, et al. Regulation of steroidogenesis and the steroidogenic acute regulatory protein by a member of the cAMP response-element binding protein family. Mol. Endocrinol. Baltim. Md. 2002;16(1):184–99.

    Article  CAS  Google Scholar 

  • Manna PR, Wang X-J, Stocco DM. Involvement of multiple transcription factors in the regulation of steroidogenic acute regulatory protein gene expression. Steroids. 2003;68(14):1125–34.

    Article  CAS  PubMed  Google Scholar 

  • Manna PR, Dyson MT, Stocco DM. Regulation of the steroidogenic acute regulatory protein gene expression: present and future perspectives. Mol Hum Reprod. 2009;15(6):321–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mårin P. Testosterone and regional fat distribution. Obes Res. 1995;3(Suppl 4):609S–12S.

    Article  PubMed  Google Scholar 

  • Mårin P, Arver S. Androgens and abdominal obesity. Baillières Clin Endocrinol Metab. 1998;12(3):441–51.

    Article  PubMed  Google Scholar 

  • Martin LJ, Boucher N, Brousseau C, Tremblay JJ. The orphan nuclear receptor NUR77 regulates hormone-induced StAR transcription in Leydig cells through cooperation with Ca2+/calmodulin-dependent protein kinase I. Mol. Endocrinol. Baltim. Md. 2008;22(9):2021–37.

    Article  CAS  Google Scholar 

  • Martin LJ, Boucher N, El-Asmar B, Tremblay JJ. cAMP-induced expression of the orphan nuclear receptor Nur77 in MA-10 Leydig cells involves a CaMKI pathway. J Androl. 2009;30(2):134–45.

    Article  CAS  PubMed  Google Scholar 

  • Mendoza-Villarroel RE, Robert NM, Martin LJ, Brousseau C, Tremblay JJ. The nuclear receptor NR2F2 activates star expression and steroidogenesis in mouse MA-10 and MLTC-1 Leydig cells. Biol Reprod. 2014;91(1):26.

    Article  PubMed  Google Scholar 

  • Nabavi SF, Braidy N, Gortzi O, Sobarzo-Sanchez E, Daglia M, Skalicka-Woźniak K, et al. Luteolin as an anti-inflammatory and neuroprotective agent: a brief review. Brain Res Bull. 2015;119(Pt A):1–11.

    Article  CAS  PubMed  Google Scholar 

  • Nielsen SE, Young JF, Daneshvar B, Lauridsen ST, Knuthsen P, Sandström B, et al. Effect of parsley (Petroselinum crispum) intake on urinary apigenin excretion, blood antioxidant enzymes and biomarkers for oxidative stress in human subjects. Br J Nutr. 1999;81(6):447–55.

    Article  CAS  PubMed  Google Scholar 

  • Nishioka T, Kawabata J, Aoyama Y. Baicalein, an alpha-glucosidase inhibitor from Scutellaria baicalensis. J Nat Prod. 1998;61(11):1413–5.

    Article  CAS  PubMed  Google Scholar 

  • Roumaud P, Martin LJ. Roles of leptin, adiponectin and resistin in the transcriptional regulation of steroidogenic genes contributing to decreased Leydig cells function in obesity. Horm Mol Biol Clin Investig. 2015;24(1):25–45.

    CAS  PubMed  Google Scholar 

  • Shin SI, Yasumura Y, Sato GH. Studies on interstitial cells in tissue culture. II. Steroid biosynthesis by a clonal line of rat testicular interstitial cells. Endocrinology. 1968;82(3):614–6.

    Article  CAS  PubMed  Google Scholar 

  • Stocco DM, Clark BJ. Regulation of the acute production of steroids in steroidogenic cells. Endocr Rev. 1996;17(3):221–44.

    CAS  PubMed  Google Scholar 

  • Swinnen JV, D’Souza B, Conti M, Ascoli M. Attenuation of cAMP-mediated responses in MA-10 Leydig tumor cells by genetic manipulation of a cAMP-phosphodiesterase. J Biol Chem. 1991;266(22):14383–9.

    CAS  PubMed  Google Scholar 

  • Tan RS, Pu SJ. Impact of obesity on hypogonadism in the andropause. Int J Androl. 2002;25(4):195–201.

    Article  CAS  PubMed  Google Scholar 

  • Tremblay JJ, Viger RS. Transcription factor GATA-4 enhances Müllerian inhibiting substance gene transcription through a direct interaction with the nuclear receptor SF-1. Mol Endocrinol Baltim Md. 1999;13(8):1388–401.

    CAS  Google Scholar 

  • Tremblay JJ, Viger RS. GATA factors differentially activate multiple gonadal promoters through conserved GATA regulatory elements. Endocrinology. 2001;142(3):977–86.

    Article  CAS  PubMed  Google Scholar 

  • Tsatsanis C, Androulidaki A, Venihaki M, Margioris AN. Signalling networks regulating cyclooxygenase-2. Int J Biochem Cell Biol. 2006;38(10):1654–61.

    Article  CAS  PubMed  Google Scholar 

  • Tuorkey MJ. Molecular targets of luteolin in cancer. Eur J Cancer Prev Off J Eur Cancer Prev Organ ECP. 2016;25(1):65–76.

    Article  CAS  Google Scholar 

  • Wang XJ. Natural flavonoids in StAR gene expression and testosterone biosynthesis in Leydig cell aging [Internet]. InTech. 2011. Available from: http://cdn.intechopen.com/pdfs/21807.pdf

  • Wang X, Liu Z, Eimerl S, Timberg R, Weiss AM, Orly J, et al. Effect of truncated forms of the steroidogenic acute regulatory protein on intramitochondrial cholesterol transfer. Endocrinology. 1998;139(9):3903–12.

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Shen C-L, Dyson MT, Eimerl S, Orly J, Hutson JC, et al. Cyclooxygenase-2 regulation of the age-related decline in testosterone biosynthesis. Endocrinology. 2005;146(10):4202–8.

    Article  CAS  PubMed  Google Scholar 

  • Xiong Z, Jiang B, Wu P-F, Tian J, Shi L-L, Gu J, et al. Antidepressant effects of a plant-derived flavonoid baicalein involving extracellular signal-regulated kinases cascade. Biol Pharm Bull. 2011;34(2):253–9.

    Article  CAS  PubMed  Google Scholar 

  • Xu X, De Pergola G, Björntorp P. The effects of androgens on the regulation of lipolysis in adipose precursor cells. Endocrinology. 1990;126(2):1229–34.

    Article  CAS  PubMed  Google Scholar 

  • Yao Y, Sang W, Zhou M, Ren G. Phenolic composition and antioxidant activities of 11 celery cultivars. J Food Sci. 2010;75(1):C9–13.

    Article  CAS  PubMed  Google Scholar 

  • Yi Lau GT, Leung LK. The dietary flavonoid apigenin blocks phorbol 12-myristate 13-acetate-induced COX-2 transcriptional activity in breast cell lines. Food Chem. Toxicol. Int. J. Publ. Br. Ind. Biol. Res. Assoc. 2010;48(10):3022–7.

    Article  Google Scholar 

Download references

Acknowledgements

The current work was funded by the New Brunswick Innovation Foundation (NBIF) (#IAR2015 to L.J.M.; #RIF2015-014 to M.T.) and the Natural Sciences and Engineering Research Council (NSERC) of Canada (#386557 to L.J.M.; #04560 to M.T.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luc J. Martin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Supplementary Figure 1

. Chemical structures of the flavones apigenin, luteolin, chrysin and baicalein. (PDF 33 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cormier, M., Ghouili, F., Roumaud, P. et al. Influences of flavones on cell viability and cAMP-dependent steroidogenic gene regulation in MA-10 Leydig cells. Cell Biol Toxicol 34, 23–38 (2018). https://doi.org/10.1007/s10565-017-9395-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10565-017-9395-8

Keywords

Navigation