Skip to main content
Log in

Autophagy-related 7 protein-dependent autophagy mediates resveratrol-caused upregulation of mitochondrial biogenesis and steroidogenesis in aged Leydig cell

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

Mitochondrial dysfunction may contribute to decreased testosterone synthesis in aged Leydig cells. Resveratrol (RSV) as an antioxidant has been shown to exhibit multiple positive effects on mitochondrion, where steroidogenesis takes place. Whether RSV can improve steroidogenesis in aged testis is still unknown. This study investigates the effect of RSV on testosterone production during aging and corresponding changes in mitochondrial biogenesis and autophagy activity, which are closely associated with steroidogenesis. Whether ATG7, an important autophagy-related protein, functions in RSV-treated aged Leydig cells will also be explored.

Methods and results

Two-month-old male C57BL/6 mice were fed for 16 months by customized regular diet with or without RSV as diet supplement. Leydig cell line TM3 cells were treated with D-galactose to induce senescence, followed with or without RSV treatment. Results found that RSV supplement increased testosterone production in both aged mice and D-galactose-induced senescent Leydig cells. Western blot results revealed that RSV treatment elevated levels of steroidogenic rate-limiting enzymes StAR and 3β-HSD, as well as autophagy-related proteins LC3II, Beclin1, ATG5 and ATG7 and mitochondrial function-related proteins mtTFA and COXIV. However, after Atg7 was knocked down in senescent Leydig cells, even though RSV was added, levels of these proteins declined significantly, accompanied by decreased levels of mitochondrial transcript factors PGC-1α, mtTFA and NRF-1 and more fragmented mitochondria, demonstrating that Atg7 knockdown wrecked the protective effects of RSV on steroidogenesis in senescent Leydig cells.

Conclusion

ATG7-dependent autophagy plays a key role in RSV-brought testosterone production increase through regulating mitochondrial biogenesis in senescent Leydig cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The data and materials are available from the corresponding authors upon request.

References

  1. Ketchem JM, Bowman EJ, Isales CM (2023) Male sex hormones, aging, and inflammation. Biogerontology 24:1–25. https://doi.org/10.1007/s10522-022-10002-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Li WR, Chen L, Chang ZJ et al (2011) Autophagic deficiency is related to steroidogenic decline in aged rat Leydig cells. Asian J Androl 13:881–888. https://doi.org/10.1038/aja.2011.85

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ramisz G, Turek W, Chmurska-Gasowska M et al (2021) Senescence and adiponectin signaling - studies in canine testis. Ann Anat 234:151606. https://doi.org/10.1016/j.aanat.2020.151606

    Article  PubMed  Google Scholar 

  4. Palmeira CM, Teodoro JS, Amorim JA et al (2019) Mitohormesis and metabolic health: the interplay between ros, camp and sirtuins. Free Radic Biol Med 141:483–491. https://doi.org/10.1016/j.freeradbiomed.2019.07.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Miller WL (2013) Steroid hormone synthesis in mitochondria. Mol Cell Endocrinol 379:62–73. https://doi.org/10.1016/j.mce.2013.04.014

    Article  CAS  PubMed  Google Scholar 

  6. Allen JA, Shankara T, Janus P et al (2006) Energized, polarized, and actively respiring mitochondria are required for acute Leydig cell steroidogenesis. Endocrinology 147:3924–3935. https://doi.org/10.1210/en.2005-1204

    Article  CAS  PubMed  Google Scholar 

  7. Rubinsztein DC, Marino G, Kroemer G (2011) Autophagy and aging. Cell 146:682–695. https://doi.org/10.1016/j.cell.2011.07.030

    Article  CAS  PubMed  Google Scholar 

  8. Gao F, Li G, Liu C et al (2018) Autophagy regulates testosterone synthesis by facilitating cholesterol uptake in Leydig cells. J Cell Biol 217:2103–2119. https://doi.org/10.1083/jcb.201710078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Herranz N, Gil J (2018) Mechanisms and functions of cellular senescence. J Clin Invest 128:1238–1246. https://doi.org/10.1172/JCI95148

    Article  PubMed  PubMed Central  Google Scholar 

  10. Price NL, Gomes AP, Ling AJ et al (2012) Sirt1 is required for ampk activation and the beneficial effects of resveratrol on mitochondrial function. Cell Metab 15:675–690. https://doi.org/10.1016/j.cmet.2012.04.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Yang X, Liu Q, Li Y et al (2020) The diabetes medication canagliflozin promotes mitochondrial remodelling of adipocyte via the ampk-sirt1-pgc-1alpha signalling pathway. Adipocyte 9:484–494. https://doi.org/10.1080/21623945.2020.1807850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Palikaras K, Lionaki E, Tavernarakis N (2015) Coordination of mitophagy and mitochondrial biogenesis during ageing in c. Elegans Nat 521:525–528. https://doi.org/10.1038/nature14300

    Article  CAS  Google Scholar 

  13. Schiavi A, Ventura N (2014) The interplay between mitochondria and autophagy and its role in the aging process. Exp Gerontol 56:147–153. https://doi.org/10.1016/j.exger.2014.02.015

    Article  CAS  PubMed  Google Scholar 

  14. Palikaras K, Daskalaki I, Markaki M et al (2017) Mitophagy and age-related pathologies: development of new therapeutics by targeting mitochondrial turnover. Pharmacol Ther 178:157–174. https://doi.org/10.1016/j.pharmthera.2017.04.005

    Article  CAS  PubMed  Google Scholar 

  15. Sabouny R, Shutt TE (2020) Reciprocal regulation of mitochondrial fission and fusion. Trends Biochem Sci 45:564–577. https://doi.org/10.1016/j.tibs.2020.03.009

    Article  CAS  PubMed  Google Scholar 

  16. Ding M, Feng N, Tang D et al (2018) Melatonin prevents drp1-mediated mitochondrial fission in diabetic hearts through sirt1-pgc1alpha pathway. J Pineal Res 65:e12491. https://doi.org/10.1111/jpi.12491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Yamada Y, Takano Y, Satrialdi et al (2020) Therapeutic strategies for regulating mitochondrial oxidative stress. Biomolecules. https://doi.org/10.3390/biom10010083

    Article  PubMed  PubMed Central  Google Scholar 

  18. Hajam YA, Rani R, Ganie SY et al (2022) Oxidative stress in human pathology and aging: molecular mechanisms and perspectives. Cells 11:552. https://doi.org/10.3390/cells11030552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lagouge M, Argmann C, Gerhart-Hines Z et al (2006) Resveratrol improves mitochondrial function and protects against metabolic disease by activating sirt1 and pgc-1alpha. Cell 127:1109–1122. https://doi.org/10.1016/j.cell.2006.11.013

    Article  CAS  PubMed  Google Scholar 

  20. Madeo F, Carmona-Gutierrez D, Hofer SJ et al (2019) Caloric restriction mimetics against age-associated disease: targets, mechanisms, and therapeutic potential. Cell Metab 29:592–610. https://doi.org/10.1016/j.cmet.2019.01.018

    Article  CAS  PubMed  Google Scholar 

  21. Wang P, Lin M, Chen C et al (2022) Autophagy modulation in resveratrol protective effects on steroidogenesis in high-fat diet-fed mice and h2o2-challenged tm3 cells. Mol Biol Rep 49:2973–2983. https://doi.org/10.1007/s11033-022-07120-x

    Article  CAS  PubMed  Google Scholar 

  22. Wang HJ, Wang Q, Lv ZM et al (2015) Resveratrol appears to protect against oxidative stress and steroidogenesis collapse in mice fed high-calorie and high-cholesterol diet. Andrologia 47:59–65. https://doi.org/10.1111/and.12231

    Article  CAS  PubMed  Google Scholar 

  23. Beattie MC, Adekola L, Papadopoulos V et al (2015) Leydig cell aging and hypogonadism. Exp Gerontol 68:87–91. https://doi.org/10.1016/j.exger.2015.02.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Tena-Sempere M, Rannikko A, Kero J et al (1997) Molecular mechanisms of reappearance of luteinizing hormone receptor expression and function in rat testis after selective Leydig cell destruction by ethylene dimethane sulfonate. Endocrinology 138:3340–3348. https://doi.org/10.1210/endo.138.8.5325

    Article  CAS  PubMed  Google Scholar 

  25. Wang P, Zhang S, Lin S et al (2022) Melatonin ameliorates diabetic hyperglycaemia-induced impairment of leydig cell steroidogenic function through activation of sirt1 pathway. Reprod Biol Endocrinol 20:117. https://doi.org/10.1186/s12958-022-00991-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wang LF, Cao Q, Wen K et al (2019) Cd38 deficiency alleviates d-galactose-induced myocardial cell senescence through nad+/sirt1 signaling pathway. Front Physiol 10:1125. https://doi.org/10.3389/fphys.2019.01125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Texada MJ, Malita A, Christensen CF et al (2019) Autophagy-mediated cholesterol trafficking controls steroid production. Dev Cell 48:659–671. https://doi.org/10.1016/j.devcel.2019.01.007

    Article  CAS  PubMed  Google Scholar 

  28. Zirkin BR, Chen H (2000) Regulation of Leydig cell steroidogenic function during aging. Biol Reprod 63:977–981. https://doi.org/10.1095/biolreprod63.4.977

    Article  CAS  PubMed  Google Scholar 

  29. Papadopoulos V, Zirkin BR (2021) Leydig cell aging: molecular mechanisms and treatments. Vitam Horm 115:585–609. https://doi.org/10.1016/bs.vh.2020.12.023

    Article  CAS  PubMed  Google Scholar 

  30. Novakovic R, Rajkovic J, Gostimirovic M et al (2022) Resveratrol and reproductive health. Life (Basel). https://doi.org/10.3390/life12020294

    Article  PubMed  PubMed Central  Google Scholar 

  31. Neaves WB, Johnson L, Porter JC et al (1984) Leydig cell numbers, daily sperm production, and serum gonadotropin levels in aging men. J Clin Endocrinol Metab 59:756–763. https://doi.org/10.1210/jcem-59-4-756

    Article  CAS  PubMed  Google Scholar 

  32. Kaufman JM, Lapauw B, Mahmoud A et al (2019) Aging and the male reproductive system. Endocr Rev 40:906–972. https://doi.org/10.1210/er.2018-00178

    Article  PubMed  Google Scholar 

  33. Pawlicki P, Koziorowska A, Koziorowski M et al (2023) Senescence and autophagy relation with the expressional status of non-canonical estrogen receptors in testes and adrenals of roe deer (Capreoluscapreolus) during the pre-rut period. Theriogenology 198:141–152. https://doi.org/10.1016/j.theriogenology.2022.12.023

    Article  CAS  PubMed  Google Scholar 

  34. Lustofin K, Niedbala P, Pawlicki P et al (2021) Senescent cells in rabbit, nutria and chinchilla testes-results from histochemical and immunohistochemical studies. Anim Reprod Sci 226:106701. https://doi.org/10.1016/j.anireprosci.2021.106701

    Article  CAS  PubMed  Google Scholar 

  35. Davinelli S, De Stefani D, De Vivo I et al (2020) Polyphenols as caloric restriction mimetics regulating mitochondrial biogenesis and mitophagy. Trends Endocrinol Metab 31:536–550. https://doi.org/10.1016/j.tem.2020.02.011

    Article  CAS  PubMed  Google Scholar 

  36. Chen M, Yan R, Luo J et al (2023) The role of pgc-1alpha-mediated mitochondrial biogenesis in neurons. Neurochem Res. https://doi.org/10.1007/s11064-023-03934-8

    Article  PubMed  PubMed Central  Google Scholar 

  37. Qi XM, Qiao YB, Zhang YL et al (2023) Pgc-1alpha/nrf1-dependent cardiac mitochondrial biogenesis: a druggable pathway of calycosin against triptolide cardiotoxicity. Food Chem Toxicol 171:113513. https://doi.org/10.1016/j.fct.2022.113513

    Article  CAS  PubMed  Google Scholar 

  38. Cao W, Li J, Yang K et al (2021) An overview of autophagy: mechanism, regulation and research progress. Bull Cancer 108:304–322. https://doi.org/10.1016/j.bulcan.2020.11.004

    Article  PubMed  Google Scholar 

  39. Walczak-Jedrzejowska R, Slowikowska-Hilczer J, Marchlewsk K et al (2007) During seminiferous tubule maturation testosterone and synergistic action of fsh with estradiol support germ cell survival while estradiol alone has pro-apoptotic effect. Folia Histochem Cytobiol 45(Suppl 1):S59–S64

    PubMed  Google Scholar 

  40. Wang Y, Chen F, Ye L et al (2017) Steroidogenesis in Leydig cells: effects of aging and environmental factors. Reproduction 154:R111–R122. https://doi.org/10.1530/REP-17-0064

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by supported by Anhui Provincial Natural Science Foundation of China (Grant No. 2108085MH259).

Author information

Authors and Affiliations

Authors

Contributions

FL: prepared Figs. 1 and 2 and conducted the study, SZ and XZ: prepared Figs. 3, 4 and 5 and wrote the main manuscript. ZL: designed the investigation and edited the manuscript. All authors reviewed the manuscript.

Corresponding author

Correspondence to Zhengmei Lv.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethical approval

All experiments were approved by Experimental Animal Ethics Committee of Anhui Medical University (NO. LLSC20200078) and followed the guidelines of the Administration of Affairs Concerning Animal Experimentation of China.

Consent for publication

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, F., Zhang, S., Zhu, X. et al. Autophagy-related 7 protein-dependent autophagy mediates resveratrol-caused upregulation of mitochondrial biogenesis and steroidogenesis in aged Leydig cell. Mol Biol Rep 51, 28 (2024). https://doi.org/10.1007/s11033-023-08935-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11033-023-08935-y

Keywords

Navigation