Skip to main content
Log in

Alpha-Fe2O3 elicits diameter-dependent effects during exposure to an in vitro model of the human placenta

  • Original Research
  • Published:
Cell Biology and Toxicology Aims and scope Submit manuscript

Abstract

Iron oxide nanoparticles offer unique possibilities due to the change in their physico-chemical parameters when synthesized on the nanoscale (10−9 m) compared to their bulk forms. While novel uses exist for these materials when synthesized as nanoparticles, their unintended effects on the human body and specifically during pregnancy remain ill defined. In this study, an iron oxide nanoparticle, α-Fe2O3, was employed and the potential toxicity due to exposure was assessed in the widely used model human placental cell line BeWo b30. These cells were grown as epithelia, and subsequently assessed for their epithelial integrity, reactive oxygen species production and cellular viability, ultrastructural and morphological disruption, and genotoxicity as a result of exposure to α-Fe2O3 nanoparticles. Transepithelial electrical resistance indicated that exposure to the large (50 and 78 nm), but not small (15 nm) diameter particles of α-Fe2O3 nanomaterial resulted in leakiness of the epithelium. Exposure to the large diameters of 50 and 78 nm resulted in increases in cell death and reactive oxygen species. Disruption of junctional integrity as monitored by immunolocalization of the tight junction protein ZO-1 was found to occur as a consequence of exposure to large diameter NPs. It was found that there was reduction in the number of microvilli responsible for increased surface area for nutrient absorption after exposing the epithelia to large diameter NPs. Finally, genotoxicity as assessed by DNA microarray and confirmed by QPCR indicated that the large diameter particles (78 nm) induce apoptosis in these cells. These data indicate that large (50 and 78 nm), but not small (15 nm) α-Fe2O3 nanoparticles disrupt the barrier function of this epithelium as assessed by in vitro analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

BSA:

Bovine serum albumin

DAPI:

4′,6-Diamidino-2-phenylindole

DLS:

Dynamic light scattering

ICB:

Intracellular buffer

mRNA:

Messenger RNA

NP(s):

Nanoparticle

PBS:

Phosphate-buffered saline

ROS:

Reactive oxygen species

SEM:

Scanning electron microscopy

TEER:

Transepithelial electrical resistance

TEM:

Transmission electron microscopy

ZO-1:

Zonula Occludens-1

References

  • Amstad E, Textor M, Reimhult E. Stabilization and functionalization of iron oxide nanoparticles for biomedical applications. Nanoscale. 2011;3(7):2819–43.

    Article  CAS  PubMed  Google Scholar 

  • Anderson JM, Van Itallie CM, Peterson MD, Stevenson BR, Carew EA, Mooseker MS. ZO-1 mRNA and protein expression during tight junction assembly in Caco-2 cells. J Cell Biol. 1989;109(3):1047–56.

    Article  CAS  PubMed  Google Scholar 

  • Aplin J. The cell biology of human implantation. Placenta. 1996;17(5):269–75.

    Article  CAS  PubMed  Google Scholar 

  • Bement WM, Forscher P, Mooseker MS. A novel cytoskeletal structure involved in purse string wound closure and cell polarity maintenance. J Cell Biol. 1993;121(3):565–78. Epub 1993/05/01.

    Article  CAS  PubMed  Google Scholar 

  • Berryman M, Gary R, Bretscher A. Ezrin oligomers are major cytoskeletal components of placental microvilli: a proposal for their involvement in cortical morphogenesis. J Cell Biol. 1995;131(5):1231–42.

    Article  CAS  PubMed  Google Scholar 

  • Bhabra G, Sood A, Fisher B, Cartwright L, Saunders M, Evans WH, et al. Nanoparticles can cause DNA damage across a cellular barrier. Nat Nanotechnol. 2009;4(12):876–83.

    Article  CAS  PubMed  Google Scholar 

  • Blowes DW, Ptacek CJ, Jambor JL. In-situ remediation of Cr (VI)-contaminated groundwater using permeable reactive walls: laboratory studies. Environ Sci Technol. 1997;31(12):3348–57.

    Article  CAS  Google Scholar 

  • Blume LF, Denker M, Gieseler F, Kunze T. Temperature corrected transepithelial electrical resistance (TEER) measurement to quantify rapid changes in paracellular permeability. Pharmazie. 2010;65:19–24.

    CAS  PubMed  Google Scholar 

  • Bode CJ, Jin H, Rytting E, Silverstein PS, Young AM, Audus KL. In vitro models for studying trophoblast transcellular transport. Methods Mol Med. 2006;122:225–39. Epub 2006/03/04.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Buyukhatipoglu K, Clyne AM. Superparamagnetic iron oxide nanoparticles change endothelial cell morphology and mechanics via reactive oxygen species formation. J Biomed Mater Res A. 2011;96(1):186–95.

    Article  PubMed  Google Scholar 

  • Cartwright L, Poulsen MS, Nielsen HM, Pojana G, Knudsen LE, Saunders M, et al. In vitro placental model optimization for nanoparticle transport studies. Int J Nanomedicine. 2012;7:497–510. Epub 2012/02/16.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Claude P. Morphological factors influencing transepithelial permeability: A model for the resistance of thezonula occludens. J Membr Biol. 1978;39(2–3):219–32.

    Article  CAS  PubMed  Google Scholar 

  • Denker HW. Implantation: a cell biological paradox. J Exp Zool. 1993;266(6):541–58. Epub 1993/09/01.

    Article  CAS  PubMed  Google Scholar 

  • Ehrenberg MS, Friedman AE, Finkelstein JN, Oberdörster G, McGrath JL. The influence of protein adsorption on nanoparticle association with cultured endothelial cells. Biomaterials. 2009;30(4):603–10.

    Article  CAS  PubMed  Google Scholar 

  • Ellis RE, Yuan J, Horvitz H. Mechanisms and functions of cell death. Annu Rev Cell Biol. 1991;7(1):663–98.

    Article  CAS  PubMed  Google Scholar 

  • Faust JJ, Zhang W, Koeneman BA, Chen Y, Capco DG. Commenting on the effects of surface treated- and non-surface treated TiO(2) in the Caco-2 cell model. Part Fibre Toxicol. 2012;9:42. Epub 2012/11/14.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fischer U, Jänicke R, Schulze-Osthoff K. Many cuts to ruin: a comprehensive update of caspase substrates. Cell Death Differ. 2003;10(1):76–100.

    Article  CAS  PubMed  Google Scholar 

  • Fulda S, Debatin K. Extrinsic versus intrinsic apoptosis pathways in anticancer chemotherapy. Oncogene. 2006;25(34):4798–811.

    Article  CAS  PubMed  Google Scholar 

  • Furuse M, Itoh M, Hirase T, Nagafuchi A, Yonemura S, Tsukita S. Direct association of occludin with ZO-1 and its possible involvement in the localization of occludin at tight junctions. J Cell Biol. 1994;127(6):1617–26.

    Article  CAS  PubMed  Google Scholar 

  • Gaugain B, Barbet J, Capelle N, Roques BP, Le Pecq JB, Le Bret M. DNA bifunctional intercalators. 2. Fluorescence properties and DNA binding interaction of an ethidium homodimer and an acridine ethidium heterodimer. Appendix: Numerical solution of McGhee and von Hippel equations for competing ligands. Biochemistry. 1978;17:5078–88.

    Article  CAS  PubMed  Google Scholar 

  • Grummer R, Hohn HP, Mareel MM, Denker HW. Adhesion and invasion of three human choriocarcinoma cell lines into human endometrium in a three-dimensional organ culture system. Placenta. 1994;15(4):411–29. Epub 1994/06/01.

    Article  CAS  PubMed  Google Scholar 

  • Guo H, Stüben D, Berner Z. Removal of arsenic from aqueous solution by natural siderite and hematite. Appl Geochem. 2007;22(5):1039–51.

    Article  CAS  Google Scholar 

  • Gupta AK, Gupta M. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials. 2005;26(18):3995–4021.

    Article  CAS  PubMed  Google Scholar 

  • Gupta AK, Naregalkar RR, Vaidya VD, Gupta M. Recent advances on surface engineering of magnetic iron oxide nanoparticles and their biomedical applications. Nanomedicine (Lond). 2007;2:23–39.

    Article  CAS  Google Scholar 

  • Hannan NJ, Paiva P, Dimitriadis E, Salamonsen LA. Models for study of human embryo implantation: choice of cell lines? Biol Reprod. 2010;82(2):235–45.

    Article  CAS  PubMed  Google Scholar 

  • He YT, Wan J, Tokunaga T. Kinetic stability of hematite nanoparticles: the effect of particle sizes. J Nanoparticle Res. 2008;10(2):321–32.

    Article  CAS  Google Scholar 

  • Heintzelman MB, Hasson T, Mooseker MS. Multiple unconventional myosin domains of the intestinal brush border cytoskeleton. J Cell Sci. 1994;107(12):3535–43.

    CAS  PubMed  Google Scholar 

  • Hidalgo IJ, Raub T, Borchardt R. Characterization of the human colon carcinoma cell line (Caco-2) as a model system for intestinal epithelial permeability. Gastroenterology. 1989;96(3):736.

    CAS  PubMed  Google Scholar 

  • Huppertz B. Nanoparticles: Barrier thickness matters. Nat Nanotechnol. 2011;6(12):758–9.

    Article  CAS  PubMed  Google Scholar 

  • John NJ, Linke M, Denker HW. Quantitation of human choriocarcinoma spheroid attachment to uterine epithelial cell monolayers. In Vitro Cell Dev Biol Anim. 1993;29A(6):461–8. Epub 1993/06/01.

    Article  CAS  PubMed  Google Scholar 

  • Jovov B, Wills NK, Lewis SA. A spectroscopic method for assessing confluence of epithelial cell cultures. Am J Physiol. 1991;261:C1196–203.

    CAS  PubMed  Google Scholar 

  • Kalive M, Zhang W, Chen Y, Capco DG. Human intestinal epithelial cells exhibit a cellular response indicating a potential toxicity upon exposure to hematite nanoparticles. Cell Biol Toxicol. 2012;28(5):343–68. Epub 2012/08/21.

    Article  CAS  PubMed  Google Scholar 

  • Kievit FM, Zhang M. Surface engineering of iron oxide nanoparticles for targeted cancer therapy. Acc Chem Res. 2011;44(10):853–62.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • King BF. Comparative studies of structure and function in mammalian placentas with special reference to maternal-fetal transfer of iron. Am Zool. 1992;32(2):331–42.

    Google Scholar 

  • Koeneman BA, Zhang Y, Hristovski K, Westerhoff P, Chen Y, Crittenden JC, et al. Experimental approach for an< i> in vitro</i> toxicity assay with non-aggregated quantum dots. Toxicol In Vitro. 2009;23(5):955–62.

    Article  CAS  PubMed  Google Scholar 

  • Koeneman BA, Zhang Y, Westerhoff P, Chen Y, Crittenden JC, Capco DG. Toxicity and cellular responses of intestinal cells exposed to titanium dioxide. Cell Biol Toxicol. 2010;26(3):225–38.

    Article  CAS  PubMed  Google Scholar 

  • Kokkinos MI, Murthi P, Wafai R, Thompson EW, Newgreen DF. Cadherins in the human placenta–epithelial-mesenchymal transition (EMT) and placental development. Placenta. 2010;31(9):747–55. Epub 2010/07/28.

    Article  CAS  PubMed  Google Scholar 

  • Kreuter J. Drug targeting with nanoparticles. Eur J Drug Metab Pharmacokinet. 1994;19(3):253–6.

    Article  CAS  PubMed  Google Scholar 

  • Kulvietis V, Zalgeviciene V, Didziapetriene J, Rotomskis R. Transport of nanoparticles through the placental barrier. Tohoku J Exp Med. 2011;225(4):225–34.

    Article  CAS  PubMed  Google Scholar 

  • Lee N, Tong MK, Leung PP, Chan VW, Leung S, Tam P-C, et al. Kidney claudin-19: localization in distal tubules and collecting ducts and dysregulation in polycystic renal disease. FEBS Lett. 2006;580(3):923.

    Article  CAS  PubMed  Google Scholar 

  • Li H, van Ravenzwaay B, Rietjens IM, Louisse J. Assessment of an in vitro transport model using BeWo b30 cells to predict placental transfer of compounds. Arch Toxicol. 2013. Epub 2013/05/22.

  • Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods (San Diego, Calif). 2001;25(4):402–8. Epub 2002/02/16.

    Article  CAS  Google Scholar 

  • Mahmoudi M, Sant S, Wang B, Laurent S, Sen T. Superparamagnetic iron oxide nanoparticles (SPIONs): development, surface modification and applications in chemotherapy. Adv Drug Deliv Rev. 2011;63(1):24–46.

    Article  CAS  PubMed  Google Scholar 

  • Maiorano G, Sabella S, Sorce B, Brunetti V, Malvindi MA, Cingolani R, et al. Effects of cell culture media on the dynamic formation of protein− nanoparticle complexes and influence on the cellular response. ACS Nano. 2010;4(12):7481–91.

    Article  CAS  PubMed  Google Scholar 

  • Mardon H, Grewal S, Mills K. Experimental models for investigating implantation of the human embryo. Semin Reprod Med. 2007;25:410–7.

    Article  PubMed  Google Scholar 

  • Matter K, Aijaz S, Tsapara A, Balda MS. Mammalian tight junctions in the regulation of epithelial differentiation and proliferation. Curr Opin Cell Biol. 2005;17(5):453–8.

    Article  CAS  PubMed  Google Scholar 

  • Menezes V, Malek A, Keelan AJ. Nanoparticulate drug delivery in pregnancy: placental passage and fetal exposure. Curr Pharm Biotechnol. 2011;12(5):731–42.

    Article  CAS  PubMed  Google Scholar 

  • Mishra B, Patel BB, Tiwari S. Colloidal nanocarriers: a review on formulation technology, types and applications toward targeted drug delivery. Nanomedicine Nanotechnol Biol Med. 2010;6(1):9–24.

    Article  CAS  Google Scholar 

  • Mooseker MS. Organization, chemistry, and assembly of the cytoskeletal apparatus of the intestinal brush border. Annu Rev Cell Biol. 1985;1(1):209–41.

    Article  CAS  PubMed  Google Scholar 

  • Morck TJ, Sorda G, Bechi N, Rasmussen BS, Nielsen JB, Ietta F, et al. Placental transport and in vitro effects of Bisphenol A. Reprod Toxicol (Elmsford, NY). 2010;30(1):131–7. Epub 2010/03/11.

    Article  CAS  Google Scholar 

  • Mukherjee T, Squillantea E, Gillespieb M, Shao J. Transepithelial electrical resistance is not a reliable measurement of the Caco-2 monolayer integrity in Transwell. Drug Deliv. 2004;11:11–8.

    Article  CAS  PubMed  Google Scholar 

  • Mutch DM, Berger A, Mansourian R, Rytz A, Roberts M-A. The limit fold change model: a practical approach for selecting differentially expressed genes from microarray data. BMC Bioinforma. 2002;3(1):17.

    Article  Google Scholar 

  • Nagata S. Apoptosis by Death Factor Review. Cell. 1997;88(355–365):392.

    Google Scholar 

  • Pattillo RA, Gey GO. The establishment of a cell line of human hormone-synthesizing trophoblastic cells in vitro. Cancer Res. 1968;28(7):1231–6. Epub 1968/07/01.

    CAS  PubMed  Google Scholar 

  • Penners N, Koopal L. Preparation and optical properties of homodisperse haematite hydrosols. Colloids Surf. 1986;19(4):337–49.

    Article  CAS  Google Scholar 

  • Pietroiusti A, Campagnolo L, Fadeel B. Interactions of engineered nanoparticles with organs protected by internal biological barriers. Small. 2013;9:1557–72.

    Article  CAS  PubMed  Google Scholar 

  • Pijnenborg R. Trophoblast invasion and placentation in the human: morphological aspects. Trophoblast Invasion and Endometrial Receptivity: Springer; 1990. p. 33–47.

  • Quackenbush J. Microarray data normalization and transformation. Nat Genet. 2002;32:496–501.

    Article  CAS  PubMed  Google Scholar 

  • Rampon C, Bouillot S, Climescu-Haulica A, Prandini M-H, Cand F, Vandenbrouck Y, et al. Protocadherin 12 deficiency alters morphogenesis and transcriptional profile of the placenta. Physiol Genomics. 2008;34(2):193–204.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Reed JC. Mechanisms of apoptosis. Am J Pathol. 2000;157(5):1415–30.

    Article  CAS  PubMed  Google Scholar 

  • Rytting E, Audus KL. Novel organic cation transporter 2-mediated carnitine uptake in placental choriocarcinoma (BeWo) cells. J Pharmacol Exp Ther. 2005;312(1):192–8. Epub 2004/08/19.

    Article  CAS  PubMed  Google Scholar 

  • Rytting E, Audus KL. Effects of low oxygen levels on the expression and function of transporter OCTN2 in BeWo cells. J Pharm Pharmacol. 2007;59(8):1095–102. Epub 2007/08/30.

    Article  CAS  PubMed  Google Scholar 

  • Rytting E, Audus KL. Contributions of phosphorylation to regulation of OCTN2 uptake of carnitine are minimal in BeWo cells. Biochem Pharmacol. 2008;75(3):745–51. Epub 2007/11/06.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Saunders M. Transplacental transport of nanomaterials. Wiley interdisciplinary reviews. Nanomedicine Nanobiotechnol. 2009;1(6):671–84. Epub 2010/01/06.

    Article  CAS  Google Scholar 

  • Semmler-Behnke M, Fertsch S, Schmid G, Wenk A, Kreyling WG. Uptake of 1.4 nm versus 18 nm gold nanoparticles in secondary target organs is size dependent in control and pregnant rats after intratracheal or intravenous application. EuroNanoForum 2007. 2007:102.

  • Semmler–Behnke M, Kreyling WG, Lipka J, Fertsch S, Wenk A, Takenaka S, et al. Biodistribution of 1.4– and 18–nm Gold Particles in Rats. Small. 2008;4(12):2108–11.

    Article  PubMed  Google Scholar 

  • Silverstein SC, Steinman RM, Cohn ZA. Endocytosis. Annu Rev Biochem. 1977;46(1):669–722.

    Article  CAS  PubMed  Google Scholar 

  • Sood A, Salih S, Roh D, Lacharme-Lora L, Parry M, Hardiman B, et al. Signalling of DNA damage and cytokines across cell barriers exposed to nanoparticles depends on barrier thickness. Nat Nanotechnol. 2011;6(12):824–33.

    Article  CAS  PubMed  Google Scholar 

  • Stevenson BR, Siliciano JD, Mooseker MS, Goodenough DA. Identification of ZO-1: a high molecular weight polypeptide associated with the tight junction (zonula occludens) in a variety of epithelia. J Cell Biol. 1986;103(3):755–66.

    Article  CAS  PubMed  Google Scholar 

  • Takeda K, Suzuki K-I, Ishihara A, Kubo-Irie M, Fujimoto R, Tabata M, et al. Nanoparticles transferred from pregnant mice to their offspring can damage the genital and cranial nerve systems. J Health Sci. 2009;55(1):95–102.

    Article  CAS  Google Scholar 

  • Thorburn A. Death receptor-induced cell killing. Cell Signal. 2004;16(2):139–44.

    Article  CAS  PubMed  Google Scholar 

  • van der Ende A, du Maine A, Simmons CF, Schwartz AL, Strous GJ. Iron metabolism in BeWo chorion carcinoma cells. Transferrin-mediated uptake and release of iron. J Biol Chem. 1987;262(18):8910–6. Epub 1987/06/25.

    PubMed  Google Scholar 

  • van der Ende A, du Maine A, Schwartz AL, Strous GJ. Modulation of transferrin-receptor activity and recycling after induced differentiation of BeWo choriocarcinoma cells. Biochem J. 1990;270(2):451–7. Epub 1990/09/01.

    PubMed  Google Scholar 

  • Verma A, Stellacci F. Effect of surface properties on nanoparticle–cell interactions. Small. 2010;6:12–21.

    Article  CAS  PubMed  Google Scholar 

  • Wahajuddin SA. Superparamagnetic iron oxide nanoparticles: magnetic nanoplatforms as drug carriers. Int J Nanomedicine. 2012;7:3445.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Westerhoff P, Zhang Y, Crittenden J, Chen Y. Properties of commercial nanoparticles that affect their removal during water treatment. Nanoscience and Nanotechnology: Environmental and Health Impacts NJ: John Wiley and Sons. 2008:71–90.

  • Wice B, Menton D, Geuze H, Schwartz AL. Modulators of cyclic AMP metabolism induce syncytiotrophoblast formation< i> in vitro</i> Exp Cell Res. 1990;186(2):306–16.

    Article  CAS  PubMed  Google Scholar 

  • Wu C, Yin P, Zhu X, OuYang C, Xie Y. Synthesis of hematite (α-Fe2O3) nanorods: diameter-size and shape effects on their applications in magnetism, lithium ion battery, and gas sensors. J Phys Chem B. 2006;110(36):17806–12.

    Article  CAS  PubMed  Google Scholar 

  • Yamashita K, Yoshioka Y, Higashisaka K, Mimura K, Morishita Y, Nozaki M, et al. Silica and titanium dioxide nanoparticles cause pregnancy complications in mice. Nat Nanotechnol. 2011;6(5):321–8.

    Article  CAS  PubMed  Google Scholar 

  • Zhang W, Kalive M, Capco DG, Chen Y. Adsorption of hematite nanoparticles onto Caco-2 cells and the cellular impairments: effect of particle size. Nanotechnology. 2010;21(35):355103. Epub 2010/08/10.

    Article  PubMed  Google Scholar 

  • Zhang W, Stack AG, Chen Y. Interaction force measurement between< i> E. coli</i> cells and nanoparticles immobilized surfaces by using AFM. Colloids Surf B: Biointerfaces. 2011;82(2):316–24.

    Article  CAS  PubMed  Google Scholar 

  • Zhang W, Crittenden J, Li K, Chen Y. Attachment Efficiency of Nanoparticle Aggregation in Aqueous Dispersions: Modeling and Experimental Validation. Environ Sci Technol. 2012a;46(13):7054–62.

    Article  CAS  PubMed  Google Scholar 

  • Zhang W, Hughes J, Chen Y. Impacts of hematite nanoparticle exposure on biomechanical, adhesive, and surface electrical properties of Escherichia coli cells. Appl Environ Microbiol. 2012b;78(11):3905–15.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhou F, Kotru S, Pandey R. Pulsed laser-deposited ilmenite–hematite films for application in high-temperature electronics. Thin Solid Films. 2002;408(1):33–6.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are indebted to Professor Erik Rytting at UTMB for providing the BeWo b30 cell line employed during this study. Professor Kaushal Rege and Dr. Thrimoorthy Potta are greatly thanked for their helpful discussions of this research. The authors thank Dr. Scott Bingham for his unique willingness to provide assistance in the DNA Core Facility at Arizona State University. The authors thank Mr. David Lowry for his patience training JJF on the scanning scope. All imaging data was procured in the W.M. Keck Bioimaging Facility at Arizona State University. JJF is supported in part by the McKee Award funded by the Delta Sigma Phi Foundation, and the Dr. and Mrs. John Maher Scholarship. This study was partially supported by the US Environmental Protection Agency Science to Achieve Results Program grant RD-83385601 and National Science Foundation Grant CBET-1235166.

Competing interests

The authors declare no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yongsheng Chen or David G. Capco.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplemental Figure 1

Raw TEER values before percent normalization for epithelia exposed to NPs at concentrations of 100 μg/mL and 10 μg/mL. The histograms indicate that exposure to large diameter NPs result in disruption of TEER. (A) The histogram illustrates the change in TEER after application of different diameters of α-Fe2O3 at a concentration of 100 μg/mL. Both 50- and 78 nm NP treated epithelia follow the same trend, whereas the 15-nm diameter exposure followed the trend of the untreated specimens. (B) Exposure to 10 μg/mL for all α-Fe2O3 diameters tested results in no change compared to the untreated specimens. As indicated in the Methods section, TEER levels off at its maximum value of 40 Ωcm2 3 days after seeding BeWo cells. The NPs were applied after this 3 day culture period which is denoted as t = 0 in the graphs. All experiments were conducted at least three independent times where n = 3 (JPEG 70 kb)

High resolution image (TIFF 8084 kb)

Supplemental Figure 2

Tight junctions, as measured by ZO-1 immunofluorescence, are unperturbed after exposure to 15 nm α-Fe2O3 NPs at a 100 μg/mL concentration at the 1 day time point. After exposure to 15 nm α-Fe2O3 NPs the typical contiguous, honeycomb appearance of ZO-1 is seen in these specimens, albeit with modest discontinuity. (JPEG 86 kb)

High resolution image (TIFF 2102 kb)

Supplemental Figure 3

Morphological analysis of microvilli in 15 nm-treated specimens indicates no change in the number and structure of the microvilli. After exposure to 15 nm NPs the microvilli remain erect and appear to contain a similar number of microvilli compared to controls. (JPEG 32 kb)

High resolution image (TIFF 641 kb)

Supplemental Table 1

Detailed physico-chemical parameters of the NPs in medium indicates a change in ζ-potential as well as a slight degree of agglomeration over the course of 24 h. In ddH2O the ζ-potential of the nanomaterial remains stable and positive. However, after incubation in electrolyte-containing medium with serum there is a rapid shift to a negative ζ-potential. Further, the peak diameter grows slightly as a function of time. (JPEG 94 kb)

High resolution image (TIFF 668 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Faust, J.J., Zhang, W., Chen, Y. et al. Alpha-Fe2O3 elicits diameter-dependent effects during exposure to an in vitro model of the human placenta. Cell Biol Toxicol 30, 31–53 (2014). https://doi.org/10.1007/s10565-013-9267-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10565-013-9267-9

Keywords

Navigation