Skip to main content
Log in

The effect of culture conditions on colony morphology and proliferative capacity in human prostate cancer cell lines

  • Published:
Cell Biology and Toxicology Aims and scope Submit manuscript

Abstract

Primary cultures and cell lines form three types of colonies, termed holoclones, meroclones and paraclones by Barrandon and Green (Proc Natl Acad Sci U S A 84:2302–2306, 1987). They suggested that the three types correspond to colonies derived from stem, transit-amplifying and terminally differentiated cells. We determined the effect of culture conditions (seeding density, serum concentration, type of medium and substrate) on the proportion of each colony type and the cell number of individual colonies, using three prostate cancer cell lines, DU145, LNCaP and PC-3. In less favourable culture conditions, stem cell (SC) colonies tended to be lost; but in more favourable conditions, only modest increases in the proportion of SC colonies were observed. Under some conditions, cell number, but not colony-forming ability, was altered, indicating that colony cell number is controlled, at least in part, by different factors to colony formation. Colony-forming ability of individual cell lines is remarkably stable and there is little evidence for clonal evolution in culture, which might be expected and would result in more aggressive, faster-growing cells. Better understanding of how colony-forming efficiency is controlled could lead to the identification of drug targets that control SC growth and modify the progression of cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

CFE:

Colony-forming efficiency

DC:

Differentiated cell

dH2O:

Distilled water

FBS:

Foetal bovine serum

h:

Hours

min:

Minutes

SC:

Stem cell

SEM:

Standard error of the mean

TAC:

Transit-amplifying cell

References

  • Barrandon Y, Green H. Three clonal types of keratinocyte with different capacities for multiplication. Proc Natl Acad Sci U S A. 1987;84:2302–6.

    Article  PubMed  CAS  Google Scholar 

  • Bizzari JP, Mackillop WJ. The estimation of self-renewal in the clonogenic cells of human solid tumours: a comparison of secondary plating efficiency and colony size. Br J Cancer. 1985;52:189–95.

    Article  PubMed  CAS  Google Scholar 

  • Burdall SE, Hanby AM, Lansdown MR, Speirs V. Breast cancer cell lines: friend or foe? Breast Cancer Res. 2003;5:89–95.

    Article  PubMed  Google Scholar 

  • Cieciura SJ, Marcus PI, Puck TT. Clonal growth in vitro of epithelial cells from normal human tissues. J Exp Med. 1956;104:615–28.

    Article  PubMed  CAS  Google Scholar 

  • Cox RP, Gesner BM. Studies on the effects of simple sugars on mammalian cells in culture and characterization of the inhibition of 3T3 fibroblasts by L-fucose. Cancer Res. 1968;28:1162–72.

    PubMed  CAS  Google Scholar 

  • Daniels JT, Kearney JN, Ingham E. An investigation into the potential of extracellular matrix factors for attachment and proliferation of human keratinocytes on skin substitutes. Burns. 1997;23:26–31.

    Article  PubMed  CAS  Google Scholar 

  • Engler AJ, Sen S, Sweeney HL, Discher DE. Matrix elasticity directs stem cell lineage specification. Cell. 2006;126:677–89.

    Article  PubMed  CAS  Google Scholar 

  • Harper LJ, Piper K, Common J, Fortune F, Mackenzie IC. Stem cell patterns in cell lines derived from head and neck squamous cell carcinoma. J Oral Pathol Med. 2007;36:594–603.

    Article  PubMed  Google Scholar 

  • Horoszewicz JS, Leong SS, Kawinski E, Karr JP, Rosenthal H, Chu TM, Mirand EA, Murphy GP. LNCaP model of human prostatic carcinoma. Cancer Res. 1983;43:1809–18.

    PubMed  CAS  Google Scholar 

  • Hudson DL, O'hare M, Watt FM, Masters JR. Proliferative heterogeneity in the human prostate: evidence for epithelial stem cells. Lab Invest. 2000;80:1243–50.

    Article  PubMed  CAS  Google Scholar 

  • Jeter CR, Badeaux M, Choy G, Chandra D, Patrawala L, Liu C, Calhoun-Davis T, Zaehres H, Daley GQ, Tang DG. Functional evidence that the self-renewal gene NANOG regulates human tumor development. Stem Cells. 2009;27:993–1005.

    Article  PubMed  CAS  Google Scholar 

  • Jeter CR, Liu B, Liu X, Chen X, Liu C, Calhoun-Davis T, Repass J, Zaehres H, Shen JJ, Tang DG. NANOG promotes cancer stem cell characteristics and prostate cancer resistance to androgen deprivation. Oncogene. 2011;30:3833–45.

    Article  PubMed  CAS  Google Scholar 

  • Kaighn ME, Narayan KS, Ohnuki Y, Lechner JF, Jones LW. Establishment and characterization of a human prostatic carcinoma cell line (PC-3). Invest Urol. 1979;17:16–23.

    PubMed  CAS  Google Scholar 

  • Li H, Chen X, Calhoun-Davis T, Claypool K, Tang DG. PC3 human prostate carcinoma cell holoclones contain self-renewing tumor-initiating cells. Cancer Res. 2008;68:1820–5.

    Article  PubMed  CAS  Google Scholar 

  • Locke M, Heywood M, Fawell S, Mackenzie IC. Retention of intrinsic stem cell hierarchies in carcinoma-derived cell lines. Cancer Res. 2005;65:8944–50.

    Article  PubMed  CAS  Google Scholar 

  • Mackenzie CG, Mackenzie JB, Beck P. The effect of pH on growth, protein synthesis, and lipid-rich particles of cultured mammalian cells. J Biophys Biochem Cytol. 1961;9:141–56.

    Article  PubMed  CAS  Google Scholar 

  • Masters JR, Thomson JA, Daly-Burns B, Reid YA, Dirks WG, Packer P, Toji LH, Ohno T, Tanabe H, Arlett CF, Kelland LR, Harrison M, Virmani A, Ward TH, Ayres KL, Debenham PG. Short tandem repeat profiling provides an international reference standard for human cell lines. Proc Natl Acad Sci U S A. 2001;98:8012–7.

    Article  PubMed  CAS  Google Scholar 

  • Morton RA, Ewing CM, Nagafuchi A, Tsukita S, Isaacs WB. Reduction of E-cadherin levels and deletion of the alpha-catenin gene in human prostate cancer cells. Cancer Res. 1993;53:3585–90.

    PubMed  CAS  Google Scholar 

  • Pellegrini G, Golisano O, Paterna P, Lambiase A, Bonini S, Rama P, De Luca M. Location and clonal analysis of stem cells and their differentiated progeny in the human ocular surface. J Cell Biol. 1999;145:769–82.

    Article  PubMed  CAS  Google Scholar 

  • Pfeiffer MJ, Schalken JA. Stem cell characteristics in prostate cancer cell lines. Eur Urol. 2009;57:246–55.

    Article  PubMed  Google Scholar 

  • Pierce GB. Neoplasms, differentiations and mutations. Am J Pathol. 1974;77:103–18.

    PubMed  CAS  Google Scholar 

  • Puck TT, Marcus PI. A rapid method for viable cell titration and clone production with hela cells in tissue culture: the use of X-irradiated cells to supply conditioning factors. Proc Natl Acad Sci U S A. 1955;41:432–7.

    Article  PubMed  CAS  Google Scholar 

  • Puck TT, Marcus PI, Cieciura SJ. Clonal growth of mammalian cells in vitro; growth characteristics of colonies from single HeLa cells with and without a feeder layer. J Exp Med. 1956;103:273–83.

    Article  PubMed  CAS  Google Scholar 

  • Rochat A, Kobayashi K, Barrandon Y. Location of stem cells of human hair follicles by clonal analysis. Cell. 1994;76:1063–73.

    Article  PubMed  CAS  Google Scholar 

  • Rosler ES, Fisk GJ, Ares X, Irving J, Miura T, Rao MS, Carpenter MK. Long-term culture of human embryonic stem cells in feeder-free conditions. Dev Dyn. 2004;229:259–74.

    Article  PubMed  CAS  Google Scholar 

  • Saito S, Morita K, Kohara A, Masui T, Sasao M, Ohgushi H, Hirano T. Use of BAC array CGH for evaluation of chromosomal stability of clinically used human mesenchymal stem cells and of cancer cell lines. Hum Cell. 2011;24:2–8.

    Article  PubMed  Google Scholar 

  • Stockholm D, Benchaouir R, Picot J, Rameau P, Neildez TM, Landini G, Laplace-Builhe C, Paldi A. The origin of phenotypic heterogeneity in a clonal cell population in vitro. PLoS One. 2007;2:e394.

    Article  PubMed  Google Scholar 

  • Stone KR, Mickey DD, Wunderli H, Mickey GH, Paulson DF. Isolation of a human prostate carcinoma cell line (DU 145). Int J Cancer. 1978;21:274–81.

    Article  PubMed  CAS  Google Scholar 

  • Talbot NC, Powell AM, Caperna TJ. Comparison of colony-formation efficiency of bovine fetal fibroblast cell lines cultured with low oxygen, hydrocortisone, L-carnosine, bFGF, or different levels of FBS. Cloning Stem Cells. 2004;6:37–47.

    Article  PubMed  CAS  Google Scholar 

  • Tan L, Sui X, Deng H, Ding M. Holoclone forming cells from pancreatic cancer cells enrich tumor initiating cells and represent a novel model for study of cancer stem cells. PLoS One. 2011;6:e23383.

    Article  PubMed  CAS  Google Scholar 

  • Tang DG, Patrawala L, Calhoun T, Bhatia B, Choy G, Schneider-Broussard R, Jeter C. Prostate cancer stem/progenitor cells: identification, characterization, and implications. Mol Carcinog. 2007;46:1–14.

    Article  PubMed  CAS  Google Scholar 

  • Young L, Sung J, Stacey G, Masters JR. Detection of mycoplasma in cell cultures. Nat Protoc. 2010;5:929–34.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charlotte M. Beaver.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beaver, C.M. The effect of culture conditions on colony morphology and proliferative capacity in human prostate cancer cell lines. Cell Biol Toxicol 28, 291–301 (2012). https://doi.org/10.1007/s10565-012-9224-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10565-012-9224-z

Keywords

Navigation