Skip to main content

Advertisement

Log in

Preclinical cardio-safety assessment of torsadogenic risk and alternative methods to animal experimentation: The inseparable twins

  • Published:
Cell Biology and Toxicology Aims and scope Submit manuscript

Abstract

The last decade has been marked by the withdrawal from the market of several medicines whose use in patients has been associated with the development of torsade de pointes (TdP), a potentially life-threatening polymorphic tachycardia. In a few cases, TdP can degenerate into ventricular fibrillation and lead to sudden death, thus constituting a real problem of public health. The recently finalized ICH S7B guideline defines the prolongation of the QT interval on the electrocardiogram as the best biomarker for predicting the torsadogenic risk of a given compound. However, a growing body of evidence suggests that drugs’ torsadogenic potential may not necessarily be proportional to their ability to prolong the QT interval. It is a dynamic combination of multiple predisposing factors and components rather than a single particular event that can trigger this particular tachycardia. Following recommendations of the guideline, pharmaceutical companies have intensively implemented methodologies to assess the possible risk of QT prolongation and TdP in humans. The main problem in cardiac safety pharmacology is how best to combine the capabilities of different methodologies with their strengths and limitations in order to detect the potential of one molecular entity to induce a lethal arrhythmia of very low clinical incidence. This publication will review the current methodologies, focusing on the alternative methods to animal experimentation, including an overview of cardiac modeling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

EADs:

early afterdepolarizations

hERG:

human ether-à-go-go-related gene K+ channel

IC50 :

concentration that reduces the hERG tail current by 50%

ICH:

international conference for harmonization

IKr:

rapidly-activating delayed outward rectifier potassium current

LQTS:

long QT syndrome

TdP:

torsade de pointes

TI:

therapeutic index

References

  • Antzelevitch C. Role of transmural dispersion of repolarization in the genesis of drug-induced torsades de pointes. Heart Rhythm. 2005;2: S9–S15.

    Article  PubMed  Google Scholar 

  • Antzelevich C, Sicouri S. Clinical relevance of cardiac arrhythmias generated by early afterdepolarizations. Role of M cells in the generation of U waves, triggered activity and Torsade de Pointes. J Am Coll Cardiol. 1994;23:259–77.

    Article  Google Scholar 

  • Antzelevitch C, Belardinelli L, Zygmunt AC, et al. Electrophysiological effects of ranolazine, a novel antianginal agent with antiarrhythmic properties. Circulation. 2004;110:904–10.

    Article  PubMed  CAS  Google Scholar 

  • Belardinelli L, Antzelevitch C, Vos M. Assessing predictors of drug-induced torsade de pointes [Review]. Trends Pharmacol Sci. 2003;24:619–25.

    Article  PubMed  CAS  Google Scholar 

  • Belardinelli L, Shryock JC, Wu L, Song Y. Use of preclinical assays to predict risk of drug-induced torsades de pointes. Heart Rhythm. 2005;2(Suppl): S16–22.

    Article  PubMed  Google Scholar 

  • Benoit SR, Mendelsohn AB, Nourjah P, Staffa JA, Graham D. Risk factors for prolonged QTc among US adults: third national health and nutrition examination survey. Eur J Cardiovasc Prev Rehabil. 2005;12:363–8.

    Article  PubMed  Google Scholar 

  • Bottino D, Penland RC, Stamps A, et al. Preclinical cardiac safety assessment of pharmaceutical compounds using an integrated systems-based computer model of the heart. Prog Biophys Mol Biol. 2006;90:414–43.

    Article  PubMed  CAS  Google Scholar 

  • Cordes JS, Sun Z, Lloyd DB, et al. Pentamidine reduces hERG expression to prolong the QT interval. Br J Pharmacol. 2005;145:15–23.

    Article  PubMed  CAS  Google Scholar 

  • Curran ME, Splawski I, Timothy KW, Vincent GM, Green ED, Keating MT. A molecular basis for cardiac arrhythmia: HERG mutations cause long QT syndrome. Cell. 1995;80:795–803.

    Article  PubMed  CAS  Google Scholar 

  • Eisenhauer MD, Eliasson AH, Taylor AJ, Coyne PE Jr, Wortham DC. Incidence of cardiac arrhythmias during intravenous pentamidine therapy in HIV-infected patients. Chest. 1994;105:389–95.

    PubMed  CAS  Google Scholar 

  • Fossa AA, Gorczyca W, Wisialowski T, et al. Electrical alternans and hemodynamics in the anesthetized guinea pig can discriminate the cardiac safety of antidepressants. J Pharmacol Toxicol Methods. 2006. [In press].

  • Garny A, Noble D, Kohl P. Dimensionality in cardiac modeling. Prog Biophys Mol Biol. 2005;87:47–66.

    Article  PubMed  Google Scholar 

  • Greenstein JL, Winslow RL. An integrative model of the cardiac ventricular myocyte incorporating local control of Ca2+ release. Biophys J. 2002;83:2918–45.

    PubMed  CAS  Google Scholar 

  • Habbab MA, el-Sherif N. TU alternans, long QTU, and torsade de pointes: clinical and experimental observations. Pacing Clin Electrophysiol. 1992;15:916–31.

    Article  PubMed  CAS  Google Scholar 

  • Hodgkin AL, Huxley AF. A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol. 1952;117:500–44.

    PubMed  CAS  Google Scholar 

  • Hunter PJ, Nielsen PM, Smaill BH, LeCrice IJ, Hunter IW. An anatomical heart model with applications to myocardial activation and ventricular mechanics. Crit Rev Biomed Eng. 1992;20:401–26.

    Google Scholar 

  • Katchman AK, Koerner J, Tosaka T, Woosley RL, Ebert SN. Comparative evaluation of HERG currents and QT intervals following challenge with suspected torsadogenic and nontorsadogenic drugs. J Pharmacol Exp Ther. 2006;316:1098–106.

    Article  PubMed  CAS  Google Scholar 

  • Kusano KF, Hata Y, Yumoto A, Emori T, Sato T, Ohe T. Torsade de pointes with a normal QT interval associated with hypokalemia. Jpn Circ J. 2001;65:757–60.

    Article  PubMed  CAS  Google Scholar 

  • Lawrence CL, Pollard CE, Hammond TG, Valentin JP. Nonclinical proarrhythmia models: predicting torsades de pointes. J Pharmacol Toxicol Methods. 2005;52:46–59.

    Article  PubMed  CAS  Google Scholar 

  • Luo CH, Rudy Y. A dynamic model of the cardiac ventricular action potential, I: simulations of ionic currents and concentration changes. Circ Res. 1994a;74:1071–96.

    CAS  Google Scholar 

  • Luo CH, Rudy Y. A dynamic model of the cardiac ventricular action potential, II: afterdepolarizations, triggered activity, and potentiation. Circ Res. 1994b;74:1097–113.

    CAS  Google Scholar 

  • McCulloch A, Bassingthwaighte J, Hunter P, Noble D. Computational biology of the heart: from structure to heart. Prog Biophys Mol Biol. 1998;69:153–5.

    Article  PubMed  CAS  Google Scholar 

  • Mendes P, Kell D. Non-linear optimization of biochemical pathways: applications to metabolic engineering and parameter estimation. Bioinformatics. 1998;14:869–83.

    Article  PubMed  CAS  Google Scholar 

  • Noble D. Cardiac action and pacemaker potentials based on the Hodgkin—Huxley equations. Nature. 1960;188:495–7.

    Article  CAS  Google Scholar 

  • Noda T, Shimizu W, Satomi K, et al. Classification and mechanism of Torsade de Pointes initiation in patients with congenital long QT syndrome. Eur Heart J. 2004;25:2149–54.

    Article  PubMed  Google Scholar 

  • Passier R, Denning C, Mummery C. Cardiomyocytes from human embryonic stem cells. Handb Exp Pharmacol. 2006;174:101–2.

    Article  PubMed  CAS  Google Scholar 

  • Pearlstein RA, Vaz RJ, Kang J, Chen XL, et al. Characterization of HERG potassium channel inhibition using CoMSiA 3D QSAR and homology modeling approaches. Bioorg Med Chem Lett. 2003;13:1829–35.

    Article  PubMed  CAS  Google Scholar 

  • Recanatini M, Poluzzi E, Masseti M, Cavalli A, DePonti F. QT prolongation through hERG K+ channel blockade: current knowledge and strategies for the early detection during drug development: Med Res Rev. 2005;25:133–66.

    Article  PubMed  CAS  Google Scholar 

  • Redfern WS, Carlsson L, Davis AS, et al. Relationships between preclinical cardiac electrophysiology, clinical QT interval prolongation and torsade de pointes for a broad range of drugs: evidence for a provisional safety margin in drug development. Cardiovasc Res. 2003;58:32–45.

    Article  PubMed  CAS  Google Scholar 

  • Restivo M, Caref EB, Kozhevnikov DO, El-Sherif N. Spatial dispersion of repolarization is a key factor in the arrhythmogenicity of long QT syndrome. J Cardiovasc Electrophysiol. 2004;15:323–31.

    Article  PubMed  Google Scholar 

  • Roden D. Long QT syndrome: reduced repolarization reserve and the genetic link. J Intern Med. 2006;259:59–69.

    Article  PubMed  CAS  Google Scholar 

  • Sanguinetti M, Tristani-Firouzi M. hERG potassium channels and cardiac arrhythmia. Nature. 2006;440:463–9.

    Article  PubMed  CAS  Google Scholar 

  • Satin J, Kehat I, Caspi O, et al. Mechanism of spontaneous excitability in human embryonic stem cell derived cardiomyocytes. J Physiol. 2004;559:479–96.

    Article  PubMed  CAS  Google Scholar 

  • Schram G, Zhang L, Derakhchan K, Ehrlich JR, Belardinelli L, Nattel S. Ranolazine: ion-channel-blocking actions and in vivo electrophysiological effects. Br J Pharmacol. 2004;142:1300–8.

    Article  PubMed  CAS  Google Scholar 

  • Shah RR, Hondeghem LM. Refining detection of drug-induced proarrhythmia: QT interval and TRIaD. Heart Rhythm. 2005;2:758–72.

    Article  PubMed  Google Scholar 

  • Shaw RM, Rudy Y. Electrophysiologic effects of acute myocardial ischemia: a mechanistic investigation of action potential conduction and conduction failure. Circ Res. 1997;80:124–38.

    PubMed  CAS  Google Scholar 

  • Ten Tusscher KH, Panfilov A. Alternans and spiral breakup in a human ventricular tissue model. Am J Physiol Heart Circ Physiol. 2006;291(3):H1088–100.

    Article  PubMed  CAS  Google Scholar 

  • Thomson JA, Itskovitz-Eldor J, Shapiro SS, et al. Embryonic stem cell lines derived from human blastocysts. Science. 1998;282:1145–7. [Erratum in: Science. 1998;282:1827].

    Article  PubMed  CAS  Google Scholar 

  • Tsuji Y, Zicha S, Qi XY, Kodama I, Nattel S. Potassium channel subunit remodeling in rabbits exposed to long-term bradycardia or tachycardia: discrete arrhythmogenic consequences related to differential delayed-rectifier changes. Circulation. 2006;113:345–55.

    Article  PubMed  CAS  Google Scholar 

  • Trayanova N, Aguel F, Larson C, Haro C. Modeling cardiac defibrillation: an inquiry in post-shock dynamics. In: Zipes DP and Jalife J. eds. Cardiac electrophysiology: from cell to bedside. 4th ed. Philadelphia: WB Saunders; 2004:282–90.

    Google Scholar 

  • Zhou Z, Gong Q, Ye B, et al. Properties of HERG channels stably expressed in HEK 293 cells studied at physiological temperature. Biophys J. 1998;74:230–41.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. M. Dumotier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dumotier, B.M., Georgieva, A.V. Preclinical cardio-safety assessment of torsadogenic risk and alternative methods to animal experimentation: The inseparable twins. Cell Biol Toxicol 23, 293–302 (2007). https://doi.org/10.1007/s10565-006-0882-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10565-006-0882-6

Keywords

Navigation