Skip to main content

Drug-Induced Prolongation of the QT Interval: Present and Future Challenges for Drug Discovery

  • Chapter
Pathophysiology and Pharmacotherapy of Cardiovascular Disease

Abstract

Delayed repolarization (manifest as prolongation of the QT interval) is a well-established surrogate marker for a rare but potentially lethal arrhythmia termed torsade de pointes (TdP). Numerous preclinical assays have been developed to detect liabilities associated with drug-induced delayed repolarization across multiple levels of integration (including subcellular, cellular, organ, whole animals) and species (including humans). Off-target effects of noncardiovascular drugs (e.g., terfenadine, cisapride) include block of I Kr (also known as Kv11.1 or hERG), a repolarizing potassium current that plays a prominent role in ventricular repolarization. While contributing to the genesis of TdP, additional drug effects on other cardiac currents that modulate repolarization across different preclinical models must be considered when characterizing drug-induced delayed repolarization and translating proarrhythmic risk to humans. This chapter describes the basis for this important cardiovascular liability facing all small molecule drug candidates, various preclinical proarrhythmia models available to characterize proarrhythmic risk related to delayed repolarization, and evolving future approaches focused on cellular and subcellular mechanism-based in vitro and in silico evaluations of proarrhythmia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

ADRs:

Adverse drug reactions

AP:

Action potential

APD:

Action potential duration

AV:

Atrioventricular

CiPA:

Comprehensive in vitro proarrhythmia assay

C max :

Maximum plasma concentration

CVS:

Cardiovascular

EADs:

Early after depolarizations

ECG:

Electrocardiogram

hERG:

Human ether-a-go-go-related gene

IC50 :

Concentration inhibiting 50 % of the response

ICH:

International conference on harmonization

LQTS:

Long QT syndrome

MAPD:

Monophasic action potential duration

NCE:

New chemical entity

PD:

Pharmacodynamic

QTc:

QT interval corrected for heart rate

TdP:

Torsade de pointes

TDR:

Transmural dispersion of repolarization

TQT:

Clinical thorough QT study

TRiAD:

Triangulation, reverse use dependence, instability, and action potential duration

VF:

Ventricular fibrillation

References

  1. Valentin JP, Keisu M, Hammond TG. Predicting human adverse drug reactions from non-clinical safety studies. In: Gad SC, editor. Clinical trials handbook, vol. 87. Hoboken, NJ, USA: Wiley; 2009. p. 87–113. Chapter 4.

    Google Scholar 

  2. Stummann TC, Beilmann M, Duker G, Dumotier B, Fredriksson JM, Jones RL, Hasiwa M, Kang YJ, Mandenius CF, Meyer T, Minotti G, Valentin JP, Zünkler BJ, Bremer S. Report and recommendations of the workshop of the European Centre for the validation of alternative methods for drug-induced cardiotoxicity. Cardiovasc Toxicol. 2009;9(3):107–25.

    Article  PubMed  Google Scholar 

  3. Valentin J-P, Kenna JG, Lainée P, Redfern WS, Roberts S, Hammond TG. A literature-based analysis of cardiovascular adverse events impacting on drug development. J Pharmacol Toxicol Methods. 2012;66(2):173.

    Article  Google Scholar 

  4. Shah RR. Can pharmacogenetics help rescue drugs withdrawn from the market? Pharmacogenomics. 2006;7(6):889–908.

    Article  CAS  PubMed  Google Scholar 

  5. Selzer A, Wray H. Quinidine syncope. Paroxysmal ventricular fibrillation occurring during treatment of chronic atrial arrhythmias. Circulation. 1964;30:17–26.

    Article  CAS  PubMed  Google Scholar 

  6. Dessertenne F. Ventricular tachycardia with 2 variable opposing foci (in French). Arch Mal Coeur Vaiss. 1966;59(2):263–72.

    CAS  PubMed  Google Scholar 

  7. Yap YG, Camm AJ. Drug induced QT prolongation and torsades de pointes. Heart. 2003;89(11):1363–72.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Abriel H, Schläpfer J, Keller DI, Gavillet B, Buclin T, Biollaz J, Stoller R, Kappenberger L. Molecular and clinical determinants of drug-induced long QT syndrome: an iatrogenic channelopathy. Swiss Med Wkly. 2004;134(47–48):685–94.

    CAS  PubMed  Google Scholar 

  9. Shimizu W. Update of diagnosis and management of inherited cardiac arrhythmias. Circ J. 2013;77(12):2867–72.

    Article  CAS  PubMed  Google Scholar 

  10. Rampe D, Brown AM. A history of the role of the hERG channel in cardiac risk assessment. J Pharmacol Toxicol Methods. 2013;68(1):13–22.

    Article  CAS  PubMed  Google Scholar 

  11. Roden DM. Taking the “idio” out of “idiosyncratic”: predicting torsades de pointes. Pacing Clin Electrophysiol. 1998;21:1029–34.

    Article  CAS  PubMed  Google Scholar 

  12. Kannankeril P, Roden DM, Darbar D. Drug-induced long QT syndrome. Pharmacol Rev. 2010;62(4):760–81.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Anon. The non-clinical evaluation of the potential for delayed ventricular repolarization (QT interval prolongation) by Human Pharmaceuticals S7B, U.S. Department of Health and Human Services, Food and Drug Administration, Center for Drug Evaluation and Research (CDER), Center for Biologics Evaluation and Research (CBER). 2005.

    Google Scholar 

  14. Gintant G. An evaluation of hERG current assay performance: translating preclinical safety studies to clinical QT prolongation. Pharmacol Ther. 2011;129(2):109–19.

    Article  CAS  PubMed  Google Scholar 

  15. Martin RL, McDermott JS, Salmen HJ, Palmatier J, Cox BF, Gintant GA. The utility of hERG and repolarization assays in evaluating delayed cardiac repolarization: influence of multi-channel block. J Cardiovasc Pharmacol. 2004;43(3):369–79.

    Article  CAS  PubMed  Google Scholar 

  16. Kramer J, Obejero-Paz CA, Myatt G, Kuryshev YA, Bruening-Wright A, Verducci JS, Brown AM. MICE models: superior to the HERG model in predicting Torsade de Pointes. Sci Rep. 2013;3:2100.

    Article  PubMed Central  PubMed  Google Scholar 

  17. Witchel HJ, Dempsey CE, Sessions RB, Perry M, Milnes JT, Hancox JC, Mitcheson JS. The low-potency, voltage-dependent HERG blocker propafenone–molecular determinants and drug trapping. Mol Pharmacol. 2004;66(5):1201–12.

    Article  CAS  PubMed  Google Scholar 

  18. Farre C, Fertig N. New strategies in ion channel screening for drug discovery: are there ways to improve its productivity? Expert Opin Drug Discov. 2014;10:1103–7.

    Article  Google Scholar 

  19. Beattie KA, Luscombe C, Williams G, Munoz-Muriedas J, Gavaghan DJ, Cui Y, Mirams GR. Evaluation of an in silico cardiac safety assay: using ion channel screening data to predict QT interval changes in the rabbit ventricular wedge. J Pharmacol Toxicol Methods. 2013;68(1):88–96.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Titier K, Canal M, Déridet E, Abouelfath A, Gromb S, Molimard M, Moore N. Determination of myocardium to plasma concentration ratios of five antipsychotic drugs: comparison with their ability to induce arrhythmia and sudden death in clinical practice. Toxicol Appl Pharmacol. 2004;199(1):52–60.

    Article  CAS  PubMed  Google Scholar 

  21. Mitcheson JS, Chen J, Sanguinetti MC. Trapping of a methanesulfonanilide by closure of the HERG potassium channel activation gate. J Gen Physiol. 2000;115(3):229–40.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. DI Veroli GY, Davies MR, Zhang H, Abi-Gerges N, Boyett MR. HERG inhibitors with similar potency but different binding kinetics do not pose the same proarrhythmic risk: implications for drug safety assessment. J Cardiovasc Electrophysiol. 2013.

    Google Scholar 

  23. Nogawa H, Kawai T. HERG trafficking inhibition in drug-induced lethal cardiac arrhythmia. Eur J Pharmacol. 2014;741:336–9.

    Article  CAS  PubMed  Google Scholar 

  24. Wible BA, Hawryluk P, Ficker E, Kuryshev YA, Kirsch G, Brown AM. HERG-Lite: a novel comprehensive high-throughput screen for drug-induced hERG risk. J Pharmacol Toxicol Methods. 2005;52(1):136–45.

    Google Scholar 

  25. Drvota V, Blange I, Häggblad J, Sylven C. Desethylamiodarone prolongation of cardiac repolarization is dependent on gene expression. A novel antiarrhythmic mechanism. J Cardiovasc Pharmacol. 1998;32:645–61.

    Article  Google Scholar 

  26. Fossa AA, Wisialowski T, Magnano A, Wolfgang E, Winslow R, Gorczyca W, Crimin K, Raunig DL. Dynamic beat-to-beat modeling of the QT-RR interval relationship: analysis of QT prolongation during alterations of autonomic state versus human ether a-go-go-related gene inhibition. J Pharmacol Exp Ther. 2005;312(1):1–11.

    Article  CAS  PubMed  Google Scholar 

  27. Coi A, Bianucci AM. Combining structure- and ligand-based approaches for studies of interactions between different conformations of the hERG K+ channel pore and known ligands. J Mol Graph Model. 2013;46:93–104.

    Article  CAS  PubMed  Google Scholar 

  28. Lawrence CL, Pollard CE, Hammond TG, Valentin JP. Nonclinical proarrhythmia models: predicting Torsades de Pointes. J Pharmacol Toxicol Methods. 2005;52(1):46–59.

    Article  CAS  PubMed  Google Scholar 

  29. Thomsen MB, Matz J, Volders PGA, Vos MA. Assessing the proarrhythmic potential of drugs: current status of models and surrogate parameters of torsades de pointes arrhythmias. Pharmacol Ther. 2006;112(1):150–70.

    Article  CAS  PubMed  Google Scholar 

  30. Heijman J, Voigt N, Carlsson LG, Dobrev D. Cardiac safety assays. Curr Opin Pharmacol. 2014;15:16–21.

    Article  CAS  PubMed  Google Scholar 

  31. Bialecki R, Lainee P, Valentin JP. Iatrogenic QT prolongation. Comprehensive toxicology. 2nd ed. Editor-in-Chief, Charlene A. McQueen; Volume 6 Cardiovascular Toxicology; Volume Editors Mary Walker & Matthew Campen; Elsevier Ltd, The Boulevard, Langford Lane: Kidlington OX5 1GB, United Kingdom 6: 365–402; 2010.

    Google Scholar 

  32. Bass AS, Darpo B, Breidenbach A, Bruse K, Feldman HS, Garnes D, Hammond TG, Haverkamp W, January C, Koerner J, Lawrence C, Leishman D, Roden D, Valentin J-P, Vos MA, Zhou Y-Y, Karluss T, Sager P. Recommendations for areas of investigation from the workshop breakout sessions. workshop: ‘moving towards better predictors of drug-induced Torsade de Pointe’. Crystal City, Virginia, U.S.A., November 2005, under the auspices of the Proarrhythmia Models Project Committee – International Life Sciences Institute – Health and Environmental Sciences Institute. Br J Pharmacol. 2008;154(7):1491–501.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Sager PT. Key clinical considerations for demonstrating the utility of preclinical models to predict clinical drug-induced torsades de pointes. Br J Pharmacol. 2008;154(7):1544–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Kay GN, Plumb VJ, Arciniegas JG, Henthorn RW, Waldo AL. Torsade de pointes: the long-short initiating sequence and other clinical features: observations in 32 patients. J Am Coll Cardiol. 1983;2(5):806–17.

    Article  CAS  PubMed  Google Scholar 

  35. Surawicz B. Electrophysiologic substrate of torsade de pointes: dispersion of repolarization or early afterdepolarizations? J Am Coll Cardiol. 1989;14(1):172–84.

    Article  CAS  PubMed  Google Scholar 

  36. Chiba K, Sugiyama A, Takasuna K, Hashimoto K. Comparison of sensitivity of surrogate markers of drug-induced torsades de pointes in canine hearts. Eur J Pharmacol. 2004;502(1–2):117–22.

    Article  CAS  PubMed  Google Scholar 

  37. Fossa AA, Wisialowski T, Crimin K. QT prolongation modifies dynamic restitution and hysteresis of the beat-to-beat QT-TQ interval relationship during normal sinus rhythm under varying states of repolarization. J Pharmacol Exp Ther. 2006;316(2):498–506.

    Article  CAS  PubMed  Google Scholar 

  38. Wisialowski T, Crimin K, Engtrakul J, O’Donnell J, Fermini B, Fossa AA. Differentiation of arrhythmia risk of the antibacterials moxifloxacin, erythromycin, and telithromycin based on analysis of monophasic action potential duration alternans and cardiac instability. J Pharmacol Exp Ther. 2006;318(1):352–9.

    Article  CAS  PubMed  Google Scholar 

  39. van der Linde HJ, Van Deuren B, Somers Y, Loenders B, Towart R, Gallacher DJ. The electro-mechanical window: a risk marker for torsade de pointes in a canine model of drug induced arrhythmias. Br J Pharmacol. 2010;161(7):1444–54.

    Article  PubMed Central  PubMed  Google Scholar 

  40. Hondeghem LM. Computer aided development of antiarrhythmic agents with class IIIa properties. J Cardiovasc Electrophysiol. 1994;5(8):711–21.

    Article  CAS  PubMed  Google Scholar 

  41. Solberg LE, Singer DH, Ten Eick RE, Duffin Jr EG. Glass microelectrode studies on intramural papillary muscle cells. Description of preparation and studies on normal dog papillary muscle. Circ Res. 1974;34(6):783–97.

    Article  CAS  PubMed  Google Scholar 

  42. Antzelevitch C, Sun ZQ, Zhang ZQ, Yan GX. Cellular and ionic mechanisms underlying erythromycin-induced long QT intervals and torsade de pointes. J Am Coll Cardiol. 1996;28(7):1836–48.

    Article  CAS  PubMed  Google Scholar 

  43. Yan GX, Wu Y, Liu T, Wang J, Marinchak RA, Kowey PR. Phase 2 early afterdepolarization as a trigger of polymorphic ventricular tachycardia in acquired long-QT syndrome: direct evidence from intracellular recordings in the intact left ventricular wall. Circulation. 2001;103(23):2851–6.

    Article  CAS  PubMed  Google Scholar 

  44. Antzelevitch C, Fish J. Electrical heterogeneity within the ventricular wall. Basic Res Cardiol. 2001;96(6):517–27.

    Article  CAS  PubMed  Google Scholar 

  45. Antzelevitch C, Shimizu W. Cellular mechanisms underlying the long QT syndrome. Curr Opin Cardiol. 2002;17(1):43–51.

    Article  PubMed  Google Scholar 

  46. Yan GX, Antzelevitch C. Cellular basis for the normal T wave and the electrocardiographic manifestations of the long-QT syndrome. Circulation. 1998;98:1928–36.

    Article  CAS  PubMed  Google Scholar 

  47. Di Diego JM, Belardinelli L, Antzelevitch C. Cisapride-induced transmural dispersion of repolarization and torsade de pointes in the canine left ventricular wedge preparation during epicardial stimulation. Circulation. 2003;108(8):1027–33.

    Article  PubMed  Google Scholar 

  48. Anyukhovsky EP, Sosunov EA, Gainullin RZ, Rosen MR. The controversial M cell. J Cardiovasc Electrophysiol. 1999;10(2):244–60.

    Article  CAS  PubMed  Google Scholar 

  49. Janse MJ, Coronel R, Opthof T. Counterpoint: M cells do not have a functional role in the ventricular myocardium of the intact heart. Heart Rhythm. 2011;8(6):934–7. Methods, 52(1), 136–145.

    Article  PubMed  Google Scholar 

  50. Sugiyama A. Sensitive and reliable proarrhythmia in vivo animal models for predicting drug-induced torsades de pointes in patients with remodelled hearts. Br J Pharmacol. 2008;154(7):1528–37.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  51. Carlsson L, Almgren O, Duker G. QTU-prolongation and torsades de pointes induced by putative class III antiarrhythmic agents in the rabbit: etiology and interventions. J Cardiovasc Pharmacol. 1990;16:276–85.

    Article  CAS  PubMed  Google Scholar 

  52. Volders PGA, Vos MA, Szabo B, Sipido KR, De Groot SHM, Gorgels APM, Wellens HJJ, Lazzara R. Progress in the understanding of cardiac early afterdepolarizations and torsades de pointes: time to revise current concepts. Cardiovasc Res. 2008;46(3):376–92.

    Article  Google Scholar 

  53. Jacobson I, Carlsson L, Duker G. Beat-by-beat QT interval variability, but not QT prolongation per se, predicts drug-induced torsades de pointes in the anaesthetised methoxamine-sensitized rabbit. J Pharmacol Toxicol Methods. 2011;63(1):40–6.

    Article  CAS  PubMed  Google Scholar 

  54. Akita M, Shibazaki Y, Izumi M, Hiratsuka K, Sakai T, Kurosawa T, Shindo Y. Comparative assessment of prurifloxacin, sparfloxacin, gatifloxacin and levofloxacin in the rabbit model of proarrhythmia. J Toxicol Sci. 2004;29(1):63–71.

    Article  CAS  PubMed  Google Scholar 

  55. Satoh Y, Sugiyama A, Chiba K, Tamura K, Hashimoto K. QT-prolonging effects of sparfloxacin, a fluoroquinolone antibiotic, assessed in the in vivo canine model with monophasic action potential monitoring. J Cardiovasc Pharmacol. 2000;36(4):510–5.

    Article  CAS  PubMed  Google Scholar 

  56. Lu HR, Remeysen P, De Clerck F. Nonselective I(Kr)-blockers do not induce torsades de pointes im the anaesthetised rabbit during alpha 1-adrenoreceptor stimulation. J Cardiovasc Pharmacol. 2000;36:728–36.

    Article  PubMed  Google Scholar 

  57. Beatch GN. Antihistamine-induced ventricular arrhythmias. Br J Pharmacol. 1996;119:120P.

    Google Scholar 

  58. De Bruin ML, Pettersson M, Meyboom RH, Hoes AW, Leufkens HG. Anti-HERG activity and the risk of drug-induced arrhythmias and sudden death. Eur Heart J. 2005;26(6):590–7.

    Article  PubMed  Google Scholar 

  59. Redfern WS, Carlsson L, Davis AS, Lynch WG, MacKenzie I, Palethorpe S, Siegl PK, Strang I, Sullivan AT, Wallis R, Camm AJ, Hammond TG. Relationships between preclinical cardiac electrophysiology, clinical QT interval prolongation and torsade de pointes for a broad range of drugs: evidence for a provisional safety margin in drug development. Cardiovasc Res. 2003;58(1):32–45.

    Article  CAS  PubMed  Google Scholar 

  60. Webster R, Leishman D, Walker D. Towards a drug concentration effect relationship for QT prolongation and torsades de pointes. Curr Opin Drug Discov Devel. 2002;5(1):116–26.

    CAS  PubMed  Google Scholar 

  61. Wallis RM. Integrated risk assessment and predictive value to humans of non-clinical repolarization assays. Br J Pharmacol. 2010;159(1):115–21.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  62. Ewart L, Aylott M, Deurinck M, Engwall M, Gallacher DJ, Geys H, Jarvis P, Ju H, Leishman D, Leong L, McMahon N, Mead A, Milliken P, Suter W, Teisman A, Van Ammel K, Vargas HM, Wallis R, Valentin JP. The Concordance between nonclinical and phase I clinical cardiovascular assessment from a cross-company data sharing initiative. Toxicol Sci. 2014;142(2):427–35.

    Google Scholar 

  63. Koerner J, Valentin JP, Willard J, Park EJ, Bi D, Link WT, Fiszman M, Kozeli D, Skinner M, Vargas HM, Cantilena L, Gintant G, Wisialowski T, Pettit S. Predictivity of non-clinical repolarization assay data for clinical TQT data in the FDA database. Int J Toxicol. 2013;32:63.

    Google Scholar 

  64. Anon. E14: The clinical evaluation of QT/QTc interval prolongation and proarrhythmic potential for non-antiarrhythmic drugs, U.S. Department of Health and Human Services, Food and Drug Administration. Center for Drug Evaluation and Research (CDER) Center for Biologics Evaluation and Research (CBER). 2005.

    Google Scholar 

  65. Sarapa N, Britto M. Challenges of characterizing proarrhythmic risk due to QTc prolongation induced by nonadjuvant anticancer agents. Expert Opin Drug Saf. 2008;7(3):305–18.

    Article  CAS  PubMed  Google Scholar 

  66. Indik JH, Pearson EC, Fried K, Woosley RL. Bazett and Fridericia QT correction formulas interfere with measurement of drug-induced changes in QT interval. Heart Rhythm. 2006;3(9):1003–7.

    Article  PubMed  Google Scholar 

  67. Puddu PE, Jouve R, Mariotti S, Giampaoli S, Lanti M, Reale A, Menotti A. Evaluation of 10 QT prediction formulas in 881 middle-aged men from the seven countries study: emphasis on the cubic root Fridericia’s equation. J Electrocardiol. 1988;21(3):219–29.

    Article  CAS  PubMed  Google Scholar 

  68. Funck-Brentano C, Jaillon P. Rate-corrected QT interval: techniques and limitations. Am J Cardiol. 1993;72(6):17B–22.

    Article  CAS  PubMed  Google Scholar 

  69. Fossa AA, Langdon G, Couderc JP, Zhou M, Darpo B, Wilson F, Wallis R, Davis JD. The use of beat-to-beat electrocardiogram analysis to distinguish QT/QTc interval changes caused by moxifloxacin from those caused by vardenafil. Clin Pharmacol Ther. 2011;90(3):449–54.

    Article  CAS  PubMed  Google Scholar 

  70. Garnett CE, Zhu H, Malik M, Fossa AA, Zhang J, Badilini F, Li J, Darpö B, Sager P, Rodriguez I. Methodologies to characterize the QT/corrected QT interval in the presence of drug-induced heart rate changes or other autonomic effects. Am Heart J. 2012;163(6):912–30.

    Article  PubMed  Google Scholar 

  71. Holzgrefe H, Ferber G, Champeroux P, Gill M, Honda M, Greiter-Wilke A, Baird T, Meyer O, Saulnier M. Preclinical QT safety assessment: cross-species comparisons and human translation from an industry consortium. J Pharmacol Toxicol Methods. 2014;69(1):61–101.

    Article  CAS  PubMed  Google Scholar 

  72. Lehmann MH, Hardy S, Archibald D, quart B, MacNeil DJ. Sex difference in risk of torsade de pointes with d, l-sotalol. Circulation. 1996;94(10):2535–41.

    Article  CAS  PubMed  Google Scholar 

  73. Tisdale JE, Wroblewski HA, Overholser BR, Kingery JR, Trujillo TN, Kovacs RJ. Prevalence of QT interval prolongation in patients admitted to cardiac care units and frequency of subsequent administration of QT interval-prolonging drugs: a prospective, observational study in a large urban academic medical center in the US. Drug Saf. 2012;35(6):459–70.

    Article  CAS  PubMed  Google Scholar 

  74. van Noord C, Straus SM, Sturkenboom MC, Hofman A, Aarnoudse AJ, Bagnardi V, Kors JA, Newton-Cheh C, Witteman JC, Stricker BH. Psychotropic drugs associated with corrected QT interval prolongation. J Clin Psychopharmacol. 2009;29(1):9–15.

    Article  PubMed  Google Scholar 

  75. Ray WA, Chung CP, Murray KT, Hall K, Stein CM. Atypical antipsychotic drugs and the risk of sudden cardiac death. N Engl J Med. 2009;360(3):225–35.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  76. De Bruin ML, Langendijk PN, Koopmans RP, Wilde AA, Leufkens HG, Hoes AW. In-hospital cardiac arrest is associated with use of non-antiarrhythmic prolonging drugs. Br J Clin Pharmacol. 2007;63(2):216–23.

    Article  PubMed Central  PubMed  Google Scholar 

  77. Curtis LH, Østbye T, Sendersky V, Hutchison S, Allen LaPointe NM, Al-Khatib SM, Usdin Yasuda S, Dans PE, Wright A, Califf RM, Woosley RL, Schulman KA. Prescription of QT-prolonging drugs in a cohort of about 5 million outpatients. Am J Med. 2003;114(2):135–41.

    Article  CAS  PubMed  Google Scholar 

  78. Honig PK, Wortham DC, Zamani K, Conner DP, Mullin JC, Cantilena LR. Terfenadine-ketoconazole interaction. Pharmacokinetic and electrocardiographic consequences. JAMA. 1993;269(12):1513–8.

    Article  CAS  PubMed  Google Scholar 

  79. Gintant GA, Su Z, Martin RL, Cox BF. Utility of hERG assays as surrogate markers of delayed cardiac repolarization and QT safety. Toxicol Pathol. 2006;34(1):81–90.

    Article  CAS  PubMed  Google Scholar 

  80. Bouvy JC, Koopmanschap MA, Shah RR, Schellekens H. The cost-effectiveness of drug regulation: the example of thorough QT/QTc studies. Clin Pharmacol Ther. 2012;91(2):281–8.

    Article  CAS  PubMed  Google Scholar 

  81. Sager PT, Gintant G, Turner JR, Pettit S, Stockbridge N. Rechanneling the cardiac proarrhythmia safety paradigm: a meeting report from the Cardiac Safety Research Consortium. Am Heart J. 2014;167(3):292–300.

    Article  PubMed  Google Scholar 

  82. Mirams GR, Davies MR, Cui Y, Noble D. Application of cardiac electrophysiology simulations to pro-arrhythmic safety testing. Br J Pharmacol. 2012;167(5):932–45.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  83. Noble D. Successes and failures in modeling heart cell electrophysiology. Heart Rhythm. 2011;8(11):1798–803.

    Article  PubMed  Google Scholar 

  84. Ma J, Guo L, Fiene SJ, Anson BD, Thomson JA, Kamp TJ, Kolaja KL, Swanson BJ, January CT. High purity human-induced pluripotent stem cell-derived cardiomyocytes: electrophysiological properties of action potentials and ionic currents. Am J Physiol Heart Circ Physiol. 2011;301(5):H2006–17.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  85. O’Hara T, Virág L, Varró A, Rudy Y. Simulation of the undiseased human cardiac ventricular action potential: model formulation and experimental validation. PLoS Comput Biol. 2011;7(5):e1002061.

    Article  PubMed Central  PubMed  Google Scholar 

  86. Meyer T, Boven KH, Günther E, Fejtl M. Micro-electrode arrays in cardiac safety pharmacology: a novel tool to study QT interval prolongation. Drug Saf. 2004;27(11):763–72.

    Article  CAS  PubMed  Google Scholar 

  87. Harris K, Aylott M, Cui Y, Louttit JB, McMahon NC, Sridhar A. Comparison of electrophysiological data from human-induced pluripotent stem cell-derived cardiomyocytes to functional preclinical safety assays. Toxicol Sci. 2013;134(2):412–26.

    Article  CAS  PubMed  Google Scholar 

  88. Scull JA, McSpadden LC, Himel 4th HD, Badie N, Bursac N. Single-detector simultaneous optical mapping of V(m) and [Ca(2+)]i in cardiac monolayers. Ann Biomed Eng. 2012;40(5):1006–17.

    Article  PubMed Central  PubMed  Google Scholar 

  89. Peng S, Lacerda AE, Kirsch GE, Brown AM, Bruening-Wright A. The action potential and comparative pharmacology of stem cell-derived human cardiomyocytes. J Pharmacol Toxicol Methods. 2010;61(3):277–86.

    Article  CAS  PubMed  Google Scholar 

  90. Gibson JK, Yue Y, Bronson J, Palmer C, Numann R. Human stem cell-derived cardiomyocytes detect drug-mediated changes in action potentials and ion currents. J Pharmacol Toxicol Methods. 2014;70(3):255–67.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gary Gintant PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Gintant, G., Valentin, JP. (2015). Drug-Induced Prolongation of the QT Interval: Present and Future Challenges for Drug Discovery. In: Jagadeesh, G., Balakumar, P., Maung-U, K. (eds) Pathophysiology and Pharmacotherapy of Cardiovascular Disease. Adis, Cham. https://doi.org/10.1007/978-3-319-15961-4_49

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-15961-4_49

  • Publisher Name: Adis, Cham

  • Print ISBN: 978-3-319-15960-7

  • Online ISBN: 978-3-319-15961-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics