Skip to main content
Log in

Mechanisms of N-acetylcysteine-driven enhancement of MK886-induced apoptosis

  • Published:
Cell Biology and Toxicology Aims and scope Submit manuscript

Abstract

N-Acetylcysteine (NAC), besides being a precursor of glutathione, has an array of other effects including an ability to scavenge free radicals, modulate gene expression and signal transduction pathways, and regulate cell survival and apoptosis. At concentrations lower than 20 mmol/L, NAC is nontoxic to cultured cells and can protect against apoptosis induced by a number of agents. A few recent reports, however, have indicated that NAC can also increase apoptosis. MK886, a 5-lipoxygenase activating protein (FLAP) inhibitor, induces apoptosis in many cell lines by an unknown mechanism that is independent of FLAP and lipoxygenase activity but is possibly related to effects on kinases such as Akt. In Jurkat T lymphocytes, NAC pretreatment (10 mmol/L) enhanced MK886-induced apoptosis by 2.4-fold. Following NAC-MK886 treatment, there was a significant increase in caspase-3 activity, and a decrease in mitochondrial transmembrane potential compared to MK886 alone. However, the extent of cytochrome c release was comparable between MK886 alone and MK886-NAC treatments. The enhancement of MK886-induced apoptosis by 10 mmol/L NAC appears to be partly related to a decrease in pH caused by this concentration of NAC, because an acidic environment favors activation of effector caspases and triggering of mitochondrial apoptosis. However, because neutralized NAC also enhanced apoptosis (1.6-fold), a direct role for NAC in augmenting the apoptotic pathways initiated by MK886 is suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

DEVD:

aspartylglutamylalanylaspartic acid

DiOC6:

3,3′-dihexyloxocarbocyanine iodide

DMSO:

dimethyl sulfoxide

DTT:

dithiothreitol

FCCP:

carbonyl cyanidep-(trifluoromethoxy)phenylhydrazone

FLAP:

5-lipoxygenase activating protein

LOX:

lipoxygenase

NAC:

N-acetylcysteine

PI:

propidium iodide

pNA:

p-nitroaniline

References

  • Anderson KM, Seed T, Jajeh A, Dudeja P, Byun T, Meng J, Ou D, Bonomi P, Harris JE. An in vivo inhibitor of 5-lipoxygenase, MK886, at micromolar concentration induces apoptosis in U937 and CML cells. Anticancer Res. 1996;16(5A):2589–99.

    PubMed  CAS  Google Scholar 

  • Anderson KM, Alrefai WA, Bonomi P, Dudeja P, Ou D, Anderson C, Harris JE. Altered oncogene, tumor suppressor and cell-cycle gene expression in PANC-1 cells cultured with the pleiotrophic 5-lipoxygenase inhibitor, MK886, assessed with a gene chip. Anticancer Res. 1999;19(5B):3873–87.

    PubMed  CAS  Google Scholar 

  • Biswal SS, Datta K, Shaw SD, Feng X, Robertson JD, Kehrer JP. Glutathione oxidation and mitochondrial depolarization as mechanisms of nordihydroguaiaretic acid-induced apoptosis in lipoxygenase-deficient FL5.12 cells. Toxicol Sci. 2000;53(1):77–83.

    Article  PubMed  CAS  Google Scholar 

  • Brooks C, Ketsawatsomkron P, Sui Y, Wang J, Wang CY, Yu FS, Dong Z. Acidic pH inhibits ATP depletion-induced tubular cell apoptosis by blocking caspase-9 activation in apoptosome. Am J Physiol Renal Physiol. 2005;289(2):F41–9.

    Article  Google Scholar 

  • Buyn T, Dudeja P, Harris JE, Ou D, Seed T, Sawlani D, Meng J, Bonomi P, Anderson KM. A 5-lipoyxgenase inhibitor at micromolar concentration raises intracellular calcium in U937 cells prior to their physiologic cell death. Prostaglandins Leukot Essent Fatty Acids. 1997;56(1):69–77.

    Article  PubMed  CAS  Google Scholar 

  • Cain K, Bratton SB, Cohen GM. The Apaf-1 apoptosome: a large caspase-activating complex. Biochemie. 2002;84(2-3):203–14.

    Article  CAS  Google Scholar 

  • Conklin KA. Dietary antioxidants during cancer chemotherapy: impact on chemotherapeutic effectiveness and development of side effects. Nutr Cancer. 2000;37(1):1–18.

    Article  PubMed  CAS  Google Scholar 

  • Datta K, Biswal SS, Xu J, Towndrow KM, Feng X, Kehrer JP. A relationship between 5-lipoxygenase-activating protein and bcl-xL expression in murine pro-B lymphocytic FL5.12 cells. J Biol Chem 1998;273(43):28163–9.

    Article  PubMed  CAS  Google Scholar 

  • Datta K, Biswal SS, Kehrer JP. The 5-lipoxygenase-activating protein (FLAP) inhibitor, MK886, induces apoptosis independently of FLAP. Biochem J. 1999;340(2):371–5.

    Article  PubMed  CAS  Google Scholar 

  • Della Ragione F, Cucciolla V, Borriello A, Della Pietra V, Manna C, Galletti P, Zappia V. Pyrrolidine dithiocarbamate induces apoptosis by a cytochrome c-dependent mechanism. Biochem Biophys Res Commun. 2000;268(3):942–6.

    Article  PubMed  CAS  Google Scholar 

  • Gogvadze V, Robertson JD, Zhivotovsky B, Orrenius S. Cytochrome c release occurs via Ca2+-dependent and Ca2+-independent mechanisms that are regulated by bax. J Biol Chem. 2001;276(22):19066–71.

    Article  PubMed  CAS  Google Scholar 

  • Gugliucci A, Ranzato L, Scorrano L, Colonna R, Petronilli V, Cusan C, Prato M, Mancini M, Pagano F, Bernardi P. Mitochondria are direct targets of the lipoxygenase inhibitor MK886. A strategy for cell killing by combined treatment with MK886 and cyclooxygenase inhibitors. J Biol Chem. 2002;277(35):31789–95.

    Article  PubMed  CAS  Google Scholar 

  • Kristian T, Bernardi P, Siesjo BK. Acidosis promotes the permeability transition in energized mitochondria: implications for reperfusion injury. J Neurotrauma 2001;18(10):1059–74.

    Article  PubMed  CAS  Google Scholar 

  • La E, Kern JC, Atarod EB, Kehrer JP. Fatty acid release and oxidation are factors in lipoxygenase inhibitor-induced apoptosis. Toxicol Lett. 2003;138(3):193–203.

    Article  PubMed  CAS  Google Scholar 

  • Matsuyama S, Llopis J, Deveraux QL, Tsien TY, Reed JC. Changes in intramitochondrial and cytosolic pH: early events that modulate caspase activation during apoptosis. Nat Cell Biol. 2000;2:318–25.

    Article  PubMed  CAS  Google Scholar 

  • Penzo D, Petronilli V, Angelin A, Cusan C, Colonna R, Scorrano L, Pagano F, Prato M, Di Lisa F, Bernardi P. Arachidonic acid released by phospholipase A(2) activation triggers Ca(2+)-dependent apoptosis through the mitochondrial pathway. J Biol Chem. 2004;279(24):25219–25.

    Article  PubMed  CAS  Google Scholar 

  • Petrosillo G, Ruggiero FM, Pistolese M, Paradies G. Ca2+-induced reactive oxygen species production promotes cytochrome c release from rat liver mitochondria via mitochondrial permeability transition (MPT)-dependent and MPT-independent mechanisms. J Biol Chem. 2004;279(51):53103–8.

    Article  PubMed  CAS  Google Scholar 

  • Qanungo S, Wang M, Nieminen AL. N-Acetyl-l-cysteine enhances apoptosis through inhibition of nuclear factor-kappaB in hypoxic murine embryonic fibroblasts. J Biol Chem. 2004;279(48):50455–64.

    Article  PubMed  CAS  Google Scholar 

  • Rieber M, Rieber MS. N-Acetylcysteine enhances UV-mediated caspase-3 activation, fragmentation of E2F-4, and apoptosis in human C8161 melanoma: inhibition by ectopic Bcl-2 expression. Biochem Phamacol. 2003;65(10):1593–601.

    Article  CAS  Google Scholar 

  • Roy S, Bayly CI, Gareau Y, Houtzager VM, Kargman S, Keen SL, Rowland K, Seiden IM, Thronberry NA, Nicholson DW. Maintenance of caspase-3 proenzyme dormancy by an intrinsic ‘safety catch’ regulatory tripeptide. Proc Natl Acad Sci 2001;98(11):6132–7.

    Article  PubMed  CAS  Google Scholar 

  • Schild L, Keilhoff G, Augustin W, Reiser G, Striggow F. Distinct Ca2+ thresholds determine cytochrome c release or permeability transition pore opening in brain mitochondria. FASEB J. 2001;15(3):565–7.

    PubMed  CAS  Google Scholar 

  • Segal MS, Beem E. Effect of pH, ionic change, and osmolality on cytochrome c-mediated caspase-3 activity. Am J Physiol Cell Physiol. 2001;281(4):C1196–1204.

    PubMed  CAS  Google Scholar 

  • Tafani M, Cohn JA, Karpinich NO, Rothman RJ, Russo MA, Farber JL. Regulation of intracellular pH mediates Bax activation in HeLa cells treated with staurosporine or tumor necrosis factor-alpha. J Biol Chem. 2002;277(51):49569–76.

    Article  PubMed  CAS  Google Scholar 

  • Takahashi A, Masuda A, Sun M, Centonze VE, Herman B. Oxidative stress-induced apoptosis is associated with alterations in mitochondrial caspase activity and Bcl-2 dependent alterations in mitochondrial ph (pHm) Brain Res Bull. 2004;62:497–504.

    Article  PubMed  CAS  Google Scholar 

  • Tong Z, Wu X, Kehrer JP. Increased expression of the lipocalin 24p3 as an apoptotic mechanism for MK886. Biochem J. 2003;372(1):203–10.

    Article  PubMed  CAS  Google Scholar 

  • Tong Z, Wu X, Ovcharenko D, Zhu J, Chen CS, Kehrer JP. Neutrophil gelatinase associated lipocalin as a survival factor. Biochem J. 2005;391(2):441–8.

    Article  PubMed  CAS  Google Scholar 

  • Tsai JC, Jain M, Hsieh CM, Lee WS, Toshizumi M, Patterson C, Perrella MA, Cooke C, Wang H, Haber E, Schelgel R, Lee ME. Induction of apoptosis by purrolidinedithiocarbamate and N-acetylcysteine in vascular smooth muscle cells. J Biol Chem. 1996;271(7):3667–70.

    Article  PubMed  CAS  Google Scholar 

  • Vickers PJ. 5-Lipoxygenase-activating protein (FLAP). J Lipid Mediat Cell Signal. 1995;12(2-3):185–94.

    Article  PubMed  CAS  Google Scholar 

  • Wang X. The expanding role of mitochondria in apoptosis. Genes Dev. 2001;15(22):2922–33.

    PubMed  CAS  Google Scholar 

  • Yanase N, Ohshima K, Ikegami H, Mizuguchi J. Cytochrome c release, mitochondrial membrane depolarization, caspase-3activation, and Bax-α cleavage during IFN-α-induced apoptosis in Daudi B lymphoma cells. J Interferon Cytok Res. 2000;20(12):1121–9.

    Article  CAS  Google Scholar 

  • Yang J, Liu X, Bhalla K, Kim CN, Ibrado AM, Cai J, Peng T, Jones DP, Wang X. Prevention of apoptosis by Bcl-2: release of cytochrome c from mitochondria blocked. Science. 1997;275:1129–32.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. S. Deshpande.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deshpande, V.S., Kehrer, J.P. Mechanisms of N-acetylcysteine-driven enhancement of MK886-induced apoptosis. Cell Biol Toxicol 22, 303–311 (2006). https://doi.org/10.1007/s10565-006-0072-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10565-006-0072-6

Keywords

Navigation