Skip to main content
Log in

Modified Agro Waste-Derived Nano-silica for Synthesizing Tetrahydrobenzo[b]pyrans

  • Original Article
  • Published:
Catalysis Surveys from Asia Aims and scope Submit manuscript

Abstract

To create a potential heterogeneous catalyst for the Domino Knoevenagel cyclo-condensation that produces tetrahydropyran derivatives in aqueous media, amorphous silica derived from rice husk ash (RHA) and cotton ball ash (CBA), were modified with 3-(chloropropyl)triethoxysilane, metformin, and copper acetate. Fourier transform infrared spectroscopy, thermal gravimetric, field emission scanning electron microscopy, transmission electron microscopy, X-ray diffraction, X-ray fluorescence, and Brunauer–Emmett–Teller were utilized to characterize the produced catalysts' structure. Based on the characterization results, extracted nano-silica exhibits higher surface area and catalytic activity than commercial nano-silica. These solid acid catalysts demonstrated outstanding catalytic activity for carbonyl group activation to react with malononitrile and 1,3 dicarbonyl compounds to give a high to excellent yield of the desired substances (80–97%). Without losing their catalytic activity and leaching, the catalysts can be recovered, separated by filtration or centrifugation, and reused for several cycles. This research indicates that the desired catalysts are stable and may be effectively exploited in organic synthesis. The high rate of reaction, mild reaction conditions, high product yield, low production cost, availability, and reusability are advantages of these catalysts that make them attractive for organic transformations. A comparison was also made between the catalytic behavior of the prepared natural catalysts and that derived from commercial-grade nano-silica. Based on analyses, the rice husk-derived nano-catalyst is described as a mesoporous catalyst with a higher specific surface area (143 m2 g−1) and narrower pore diameter (4.3 nm), showing excellent catalytic activity compared to cotton ball-based nanocatalyst and the catalyst prepared from commercial-grade nano-silica regarding reaction rate and yield.

Graphical Abstract

This research used rice husks and cotton ball ashes as sources of silica nanoparticles and modified them using metformin and copper acetate. Diverse tetrahydrobenzopyran derivatives were produced with excellent yields in a short reaction time. A comparison was also made between the catalytic behavior of the prepared waste-based nanocatalysts and that derived from commercial-grade nano-silica.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Scheme 2
Scheme 3
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Notes

  1. Rice Husk Ash.

References

  1. Abdul Razak NA, Othman NH, Mat Shayuti MS et al (2022) Agricultural and industrial waste-derived mesoporous silica nanoparticles: a review on chemical synthesis route. J Environ Chem Eng 10:107322. https://doi.org/10.1016/j.jece.2022.107322

    Article  CAS  Google Scholar 

  2. Liu F, Chang S, Bai Y, Li X et al (2023) Fabrication and process optimization of chinese fir-derived SiC ceramic with high-performance friction properties. Materials 16:4487–4491. https://doi.org/10.3390/ma16124487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Chiew YL, Cheong KY (2011) A review on the synthesis of SiC from plant-based biomasses. Mater Sci Eng B 176:951–964. https://doi.org/10.1016/j.mseb.2011.05.037

    Article  CAS  Google Scholar 

  4. Yu J, Zhang J, He J et al (2009) Combinations of mild physical or chemical pretreatment with biological pretreatment for enzymatic hydrolysis of rice hull. Bioresour Technol 100:903–908. https://doi.org/10.1016/j.biortech.2008.07.025

    Article  CAS  PubMed  Google Scholar 

  5. Dey T, Naughton D (2019) Nano-porous sol-gel derived hydrophobic glass coating for increased light transmittance through a greenhouse. Mater Res Bull 116:126–130. https://doi.org/10.1016/j.materresbull.2019.04.027

    Article  CAS  Google Scholar 

  6. Liu S, Zhu M et al (2020) Research progress on the stability of solid acid catalysts. Catal Surv Asia 24:196–206. https://doi.org/10.1007/s10563-020-09305-5

    Article  CAS  Google Scholar 

  7. Gonçalves GC, Gimeno F, Dicharry C et al (2022) Design of sol-gel hybrid bio-sourced lignin/silica hydrophobic nanocomposites through a dip-coated evaporation-induced self-assembly method. ACS Sustain Chem Eng 10:12783–12795. https://doi.org/10.1021/acssuschemeng.2c03770

    Article  CAS  Google Scholar 

  8. Carraro PM, Benzaquén TB et al (2021) Eco-friendly synthesis of nanostructured mesoporous materials from natural source rice husk silica for environmental applications. Environ Sci Pollut Res 28:23707–23719. https://doi.org/10.1007/s11356-020-11043-0

    Article  CAS  Google Scholar 

  9. Efremova S, v, (2012) Rice hull as a renewable raw material and its processing routes. Russ J Gen Chem 82:999–1005. https://doi.org/10.1134/S1070363212050349

    Article  CAS  Google Scholar 

  10. Steven S, Restiawaty E, Bindar Y (2021) Routes for energy and bio-silica production from rice husk: a comprehensive review and emerging prospect. Renew Sustain Energy Rev 149:111329. https://doi.org/10.1016/j.rser.2021.111329

    Article  CAS  Google Scholar 

  11. Unglaube F, Kreyenschulte CR, Mejía E (2021) Development and application of efficient Ag-based hydrogenation catalysts prepared from rice husk waste. ChemCatChem 13:2583–2591. https://doi.org/10.1002/cctc.202100045

    Article  CAS  Google Scholar 

  12. Ma Y, Zhao X, Zhang H, Wang Z (2011) Comprehensive utilization of the hydrolyzed productions from rice hull. Ind Crops Prod 33:403–408. https://doi.org/10.1016/j.indcrop.2010.11.00

    Article  CAS  Google Scholar 

  13. Wang C, Bi H, Jiang X, Jiang C, Lin Q (2020) Experimental study on ignition and combustion of coal-rice husk blends pellets in air and oxy-fuel conditions. J Energy Inst 93:1544–1558. https://doi.org/10.1016/j.joei.2020.01.017

    Article  CAS  Google Scholar 

  14. Lim JS, Abdul Manan Z, Wan Alwi SR, Hashim H (2012) A review on the utilization of biomass from rice industry as a source of renewable energy. Renew Sustain Energy Rev 16:3084–3094. https://doi.org/10.1016/j.rser.2012.02.051

    Article  CAS  Google Scholar 

  15. Cuong T, Le A, Khai M, Hung A, Linh T, Thanh V, Huan X (2021) Renewable energy from biomass surplus resource: potential of power generation from rice straw in Vietnam. Sci Rep 11:792–801. https://doi.org/10.1038/s41598-020-80678-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Li Y, Ding X, Guo Y et al (2011) A new method of comprehensive utilization of rice husk. J Hazard Mater 186:2151–2156. https://doi.org/10.1016/j.jhazmat.2011.01.013

    Article  CAS  PubMed  Google Scholar 

  17. Limpitlaw UG (2010) Ingestion of Earth materials for health by humans and animals. Int Geol Rev 52:726–744. https://doi.org/10.1080/00206811003679695

    Article  Google Scholar 

  18. Zheng Y, Wang J, Zhu Y, Wang A (2015) Research and application of kapok fiber as an absorbing material: a mini-review. J Environ Sci 27:21–32. https://doi.org/10.1016/j.jes.2014.09.026

    Article  CAS  Google Scholar 

  19. Chen YX, Sepahvand S, Gauvin F et al (2021) One-pot synthesis of monolithic silica-cellulose aerogel applying a sustainable sodium silicate precursor. Constr Build Mater 293:123289. https://doi.org/10.1016/j.conbuildmat.2021.123289

    Article  CAS  Google Scholar 

  20. Babiarczuk B, Lewandowski D, Szczurek A, Kierzek K, Meffert M, Gerthsen D, Krzak J (2020) A novel approach of silica-PVA hybrid aerogel synthesis by simultaneous sol-gel process and phase separation. J Supercrit Fluids 166:104997–105001. https://doi.org/10.1016/j.supflu.2020.104997

    Article  CAS  Google Scholar 

  21. Dhaneswara D, Marito HS, Fatriansyah JF et al (2022) Spherical SBA-16 particles synthesized from rice husk ash and corn cob ash for efficient organic dye adsorbent. J Clean Prod 357:131974. https://doi.org/10.1016/j.jclepro.2022.131974

    Article  CAS  Google Scholar 

  22. Liou T-H, Yang C-C (2011) Synthesis and surface characteristics of nanosilica produced from alkali-extracted rice husk ash. Mater Sci Eng B 176:521–529. https://doi.org/10.1016/j.mseb.2011.01.007

    Article  CAS  Google Scholar 

  23. Bin HJ, Haque MdI, Hoque M et al (2022) Efficient extraction of silica from openly burned rice husk ash as an adsorbent for dye removal. J Clean Prod 380:135121. https://doi.org/10.1016/j.jclepro.2022.135121

    Article  CAS  Google Scholar 

  24. Marangon E, Kulzer FE, Cocco GD et al (2021) Mortars produced with an environmentally sustainable rice HUSK silica: Rheological properties. J Clean Prod 287:125561. https://doi.org/10.1016/j.jclepro.2020.125561

    Article  CAS  Google Scholar 

  25. Dileep P, Narayanankutty SK (2020) A novel method for preparation of nanosilica from bamboo leaves and its green modification as a multi-functional additive in styrene-butadiene rubber. Mater Today Commun 24:100957. https://doi.org/10.1016/j.mtcomm.2020.100957

    Article  CAS  Google Scholar 

  26. Cui J, Sun H, Luo Z et al (2015) Preparation of low surface area SiO2 microsphere from wheat husk ash with a facile precipitation process. Mater Lett 156:42–45. https://doi.org/10.1016/j.matlet.2015.04.134

    Article  CAS  Google Scholar 

  27. Zeng J, Wu L, Yang R, Zong H, Lou Y (2023) 1, 4-α-glucosidase from fusarium solani for controllable biosynthesis of silver nanoparticles and their multifunctional applications. Int J Mol Sci 24:5865. https://doi.org/10.3390/ijms24065865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Velmurugan P, Shim J, Lee K-J et al (2015) Extraction, characterization, and catalytic potential of amorphous silica from corn cobs by sol-gel method. J Ind Eng Chem 29:298–303. https://doi.org/10.1016/j.jiec.2015.04.009

    Article  CAS  Google Scholar 

  29. Chen W-S, Chang F-W, Roselin LS et al (2010) Partial oxidation of methanol over copper catalysts supported on rice husk ash. J Mol Catal A Chem 318:36–43. https://doi.org/10.1016/j.molcata.2009.11.005

    Article  CAS  Google Scholar 

  30. Abd El-Baki F, Abdullah Q, Hakamy A, Abd-Elnaiem M (2023) Nanoarchitectonics of nickel dimethylglyoxime/γ-alumina composites: structural, optical, thermal, magnetic and photocatalytic properties. J Inorg Organomet Polym Mater 12:1–19. https://doi.org/10.1007/s10904-023-02758-x

    Article  CAS  Google Scholar 

  31. Madduluri R, Mandari K, Velpula V, Varkolu M, Kamaraju R, Kang M (2020) Rice husk-derived carbon-silica supported Ni catalysts for selective hydrogenation of biomass-derived furfural and levulinic acid. Fuel 261:116339. https://doi.org/10.1016/j.fuel.2019.116339

    Article  CAS  Google Scholar 

  32. de Oliveira N, da Silva Cardoso R, Ferreira M, da Silva S, da Costa F, de OliveiraPires H, do Nascimento S (2023) Valorization of silica-based residues for the synthesis of ordered mesoporous silicas and their applications. Micropor Mesopor Mater 354:112520. https://doi.org/10.1016/j.micromeso.2023.112520

    Article  CAS  Google Scholar 

  33. Cazula B, Oliveira G, Machado B, Alves J (2021) Optimization of experimental conditions for the synthesis of Si-MCM-41 molecular sieves using different methods and silica sources. Mater Chem Phys 266:124553. https://doi.org/10.1016/j.matchemphys.2021.124553

    Article  CAS  Google Scholar 

  34. Choudhary P, Sharma R, Kumar V, Singh A, Sharma N (2023) Synthesis, characterization, and catalytic activity of bio-MCM-41 for production of bio crude oil via pyrolysis of rice straw. Waste Biomass Valorization 23:1–14. https://doi.org/10.1007/s12649-023-02124-5

    Article  CAS  Google Scholar 

  35. Jang HT, Park Y, Ko YS et al (2009) Highly siliceous MCM-48 from rice husk ash for CO2 adsorption. Int J Greenh Gas Control 3:545–549. https://doi.org/10.1016/j.ijggc.2009.02.008

    Article  CAS  Google Scholar 

  36. Adam F, Appaturi JN, Iqbal A (2012) The utilization of rice husk silica as a catalyst: review and recent progress. Catal Today 190:2–14. https://doi.org/10.1016/j.cattod.2012.04.056

    Article  CAS  Google Scholar 

  37. Hocken A, Beyer L, Lee S, Grim J, Mithaiwala H, Green D (2022) Covalently integrated silica nanoparticles in poly (ethylene glycol)-based acrylate resins: thermomechanical, swelling, and morphological behavior. Soft Matter 18:1019–1033. https://doi.org/10.1039/D1SM01377G

    Article  CAS  PubMed  Google Scholar 

  38. Trofymchuk M, Belyakova A (2023) The influence of synthesis conditions, oligosaccharide additive, and functional silane on the structure and composition of sol–gel silicas. Appl Nanosci 13:5211–5230. https://doi.org/10.1007/s13204-022-02742-w

    Article  CAS  Google Scholar 

  39. Shi X-Y, Wei J-F (2008) Selective oxidation of sulfide catalyzed by peroxotungstate immobilized on ionic liquid-modified silica with aqueous hydrogen peroxide. J Mol Catal A Chem 280:142–147. https://doi.org/10.1016/j.molcata.2007.11.002

    Article  CAS  Google Scholar 

  40. Luque R, Ahmad A, Tariq S, Mubashir M, Javed S, Rajendran S, Xia C (2023) Functionalized interconnected porous materials for heterogeneous catalysis, energy conversion, and storage applications: recent advances and future perspectives. Mater Today 56:778–784. https://doi.org/10.1016/j.mattod.2023.05.001

    Article  CAS  Google Scholar 

  41. Azadeh M, Zamani C, Ataie A, Morante JR (2018) Three-dimensional rice husk-originated mesoporous silicon and its electrical properties. Mater Today Commun 14:141–150. https://doi.org/10.1016/j.mtcomm.2018.01.003

    Article  CAS  Google Scholar 

  42. Adam F, Hello KM, Ben Aisha MR (2011) The synthesis of heterogeneous 7-amino-1-naphthalene sulfonic acid immobilized silica nanoparticles and its catalytic activity. J Taiwan Inst Chem Eng 42:843–851. https://doi.org/10.1016/j.jtice.2011.02.002

    Article  CAS  Google Scholar 

  43. Adam F, Hello KM, Osman H (2009) Esterification via saccharine mediated silica solid catalyst. Appl Catal A Gen 365:165–172. https://doi.org/10.1016/j.apcata.2009.06.013

    Article  CAS  Google Scholar 

  44. Adam F, Hello KM, Ali TH (2011) Solvent-free liquid-phase alkylation of phenol over solid sulfanilic acid catalyst. Appl Catal A Gen 399:42–49. https://doi.org/10.1016/j.apcata.2011.03.039

    Article  CAS  Google Scholar 

  45. Bankar A, Kathuria D (2022) Guanylguanidines: catalyst and ligand for organic transformations. ChemistrySelect 7:202201273. https://doi.org/10.1002/slct.202201273

    Article  CAS  Google Scholar 

  46. El-Shwiniy WH, Abbass LM, Sadeek SA, Zordok WA (2020) Synthesis, structure, and biological activity of some transition metal complexes with the mixed ligand of metformin and 1,4-diacetylbenzene. Russ J Gen Chem 90:483–488. https://doi.org/10.1134/S1070363220030238

    Article  CAS  Google Scholar 

  47. Dadashi J, Ghafuri H, Sajjadi M (2021) Fe3O4@SiO2 nanoparticles-supported Cu(II) complex: an efficient and reusable nanocatalyst for treating environmental pollutants in aqueous medium. Colloid Interface Sci Commun 44:100455. https://doi.org/10.1016/j.colcom.2021.100455

    Article  CAS  Google Scholar 

  48. Kansiz S, Qadir AM, Dege N et al (2021) Crystal structure and Hirshfeld surface analysis of a copper(II) complex containing 2-nitrobenzoate and tetramethylethylenediamine ligands. Acta Crystallogr E Crystallogr Commun 77:412–415. https://doi.org/10.1107/S2056989021002802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Patil P, Kadam S, Patil D, More P (2022) An eco-friendly innovative halide and metal-free basic ionic liquid catalyzed synthesis of tetrahydrobenzo [b] pyran derivatives in aqueous media: a sustainable protocol. J Mol Liq 345:117867. https://doi.org/10.1016/j.molliq.2021.117867

    Article  CAS  Google Scholar 

  50. Mirak-Mahaleh S, Rad-Moghadam K (2020) A novel amphipathic low-melting complex salt: an efficient homogeneous catalyst for the synthesis of pyran-annulated heterocyclic scaffolds and pyrido [2, 3-d] pyrimidines. J Mol Liq 307:112989. https://doi.org/10.1016/j.molliq.2020.112989

    Article  CAS  Google Scholar 

  51. Kiasat R, Hamid S, Saghanezhad J (2016) Synthesis and characterization of a novel nanosilica supported bipyridinium chloride nanocomposite and its application as a basic catalyst in the one-pot preparation of tetrahydrobenzo[b]pyran, dihydropyrano [3, 2-c] chromene and dihydropyrano [4, 3-b] pyran derivatives. Nano Res 1:157–165. https://doi.org/10.7508/ncr.2016.02.003

    Article  CAS  Google Scholar 

  52. Kiasat R, Hamid S, Saghanezhad J (2019) Bipyridinium chloride supported rice husk silica: an efficient nanocomposite for the one-pot preparation of spirooxindole pyran and 2-amino-4H chromene derivatives. Rev Roum Chim 64:927–934. https://doi.org/10.33224/rrch.2019.64.11.01

    Article  Google Scholar 

  53. Davarpanah J, Sayahi H, Ghahremani M, Karkhoei S (2019) Synthesis and characterization of nano acid catalyst derived from rice husk silica and its application for the synthesis of 3, 4-dihydropyrimidinones/thiones compounds. J Mol Struct 1181:546–555. https://doi.org/10.1016/j.molstruc.2018.12.113

    Article  CAS  Google Scholar 

  54. Narayanan P, Sankaran S, Narayanan N (2019) Novel rice husk ash-reduced graphene oxide nanocomposite catalysts for solvent-free Biginelli reaction with a statistical approach for the optimization of reaction parameters. Mater Chem Phys 222:63–74. https://doi.org/10.1016/j.matchemphys.2018.09.078

    Article  CAS  Google Scholar 

  55. Ahmed AE, Adam F (2007) Indium incorporated silica from rice husk and its catalytic activity. Micropor Mesopor Mater 103:284–295. https://doi.org/10.1016/j.micromeso.2007.01.055

    Article  CAS  Google Scholar 

  56. Le VH, Thuc CNH, Thuc HH (2013) Synthesis of silica nanoparticles from Vietnamese rice husk by sol–gel method. Nanoscale Res Lett 8:58. https://doi.org/10.1186/1556-276X-8-58

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Amin N, Khattak S, Noor S, Ferroze I (2016) Synthesis and characterization of silica from bottom ash of sugar industry. J Clean Prod 117:207–211. https://doi.org/10.1016/j.jclepro.2016.01.042

    Article  CAS  Google Scholar 

  58. Adam F, Osman H, Hello M (2009) The immobilization of 3-(chloropropyl) triethoxysilane onto silica by a simple one-pot synthesis. J Colloid Interface Sci 331:143–147. https://doi.org/10.1016/j.jcis.2008.11.048

    Article  CAS  PubMed  Google Scholar 

  59. Babazadeh S, Kazemi Miraki M, Pazoki F, Heydari A (2020) Tandem oxidative pudovik reaction using Fe3O4@SiO2-metformin-Cu(II) as an efficient and recoverable catalyst. ChemistrySelect 5:4263–4266. https://doi.org/10.1002/slct.201904662

    Article  CAS  Google Scholar 

  60. Shirini F, Mamaghani M, Seddighi M (2013) Sulfonated rice husk ash (RHA-SO3H): a highly powerful and efficient solid acid catalyst for the chemoselective preparation and deprotection of 1,1-diacetates. Catal Commun 36:31–37. https://doi.org/10.1016/j.catcom.2013.02.022

    Article  CAS  Google Scholar 

  61. Shi L, Zhu P, Yang R et al (2017) Functional rice husk as reductant and support to prepare as-burnt Cu-ZnO based catalysts applied in low-temperature methanol synthesis. Catal Commun 89:1–3. https://doi.org/10.1016/j.catcom.2016.10.011

    Article  CAS  Google Scholar 

  62. Brunel D (1999) Functionalized micelle-templated silicas (MTS) and their use as catalysts for fine chemicals. Micropor Mesopor Mater 27:329–344. https://doi.org/10.1016/S1387-1811(98)00266-2

    Article  CAS  Google Scholar 

  63. Gübbük İH, Güp R, Ersöz M (2008) Synthesis, characterization, and sorption properties of silica gel-immobilized Schiff base derivative. J Colloid Interface Sci 320:376–382. https://doi.org/10.1016/j.jcis.2008.01.026

    Article  CAS  PubMed  Google Scholar 

  64. Adam F, Ahmed AE, Min SL (2008) Silver modified porous silica from rice husk and its catalytic potential. J Porous Mater 15:433–444. https://doi.org/10.1007/s10934-007-9106-6

    Article  CAS  Google Scholar 

  65. Nassar MY, Ahmed IS, Raya MA (2019) A facile and tunable approach for the synthesis of pure silica nanostructures from rice husk for the removal of ciprofloxacin drug from polluted aqueous solutions. J Mol Liq 282:251–263. https://doi.org/10.1016/j.molliq.2019.03.017

    Article  CAS  Google Scholar 

  66. Paski A, Couasnon T, Perez H, Lobanov S, Blukis R, Reinsch S, Benning G (2023) Nucleation and crystallization of ferrous phosphate hydrate via an amorphous intermediate. J Am Chem Soc 145:15137–15151. https://doi.org/10.1021/jacs.3c01494

    Article  CAS  Google Scholar 

  67. Balajii M, Niju S (2020) Banana peduncle—a green and renewable heterogeneous base catalyst for biodiesel production from Ceiba pentandra oil. Renew Energy 146:2255–2269. https://doi.org/10.1016/j.renene.2019.08.062

    Article  CAS  Google Scholar 

  68. Toncón-Leal F, Villarroel-Rocha J, Silva D, Braga P, Sapag K (2021) Characterization of mesoporous region by the scanning of the hysteresis loop in adsorption–desorption isotherms. Adsorp 27:1109–1122. https://doi.org/10.1007/s10450-021-00342-8

    Article  CAS  Google Scholar 

  69. Kong L, Adidharma H (2019) A new adsorption model based on the generalized van der Waals partition function for the description of all types of adsorption isotherms. J Chem Eng 375:122112. https://doi.org/10.1016/j.cej.2019.122112

    Article  CAS  Google Scholar 

  70. Snima KS, Jayakumar R, Unnikrishnan AG (2012) O-Carboxymethyl chitosan nanoparticles for metformin delivery to pancreatic cancer cells. Carbohydr Polym 89:1003–1007. https://doi.org/10.1016/j.carbpol.2012.04.050

    Article  CAS  PubMed  Google Scholar 

  71. Rajabathar R, Al-Lohedan A, Aldhayan M, Appaturi N, Musthafa M (2023) Comparative surface study of Ru/Cu-and Ag/Cu-doped RHS catalysts from waste biomass for biofuel application. ACS Omega 8:31060–31070. https://doi.org/10.1021/acsomega.3c02992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Veisi H, Maleki B, Hamelian M, Ashrafi SS (2015) Chemoselective hydration of nitriles to amides using hydrated ionic liquid (IL) tetrabutylammonium hydroxide (TBAH) as a green catalyst. RSC Adv 5:6365–6371. https://doi.org/10.1039/C4RA09864A

    Article  CAS  Google Scholar 

  73. Moghaddas M, Davoodnia A (2015) Atom-economy click synthesis of tetrahydrobenzo[b]pyrans using carbon-based solid acid as a novel, highly efficient and reusable heterogeneous catalyst. Res Chem Intermed 41:4373–4386. https://doi.org/10.1007/s11164-014-1536-6

    Article  CAS  Google Scholar 

  74. Balalaie S, Sheikh-Ahmadi M, Bararjanian M (2007) Tetra-methyl ammonium hydroxide: an efficient and versatile catalyst for the one-pot synthesis of tetrahydrobenzo[b]pyran derivatives in aqueous media. Catal Commun 8:1724–1728. https://doi.org/10.1016/j.catcom.2007.01.034

    Article  CAS  Google Scholar 

  75. Zolfigol MA, Safaiee M, Bahrami-Nejad N (2016) Dendrimeric magnetic nanoparticle cores with co-phthalocyanine tags and their application in the synthesis of tetrahydrobenzo[b]pyran derivatives. New J Chem 40:5071–5079. https://doi.org/10.1039/C6NJ00243A

    Article  CAS  Google Scholar 

  76. Khorshidi N, Heydari R, Maghsoodlou M, Fatahpour M (2022) Facile one-pot three-component route to an assembly of 2-amino-4H-chromenes and spirochromenes promoted via ceria nanoparticles in a benign manner. Bull Korean Chem Soc 43:836–843. https://doi.org/10.1002/bkcs.12526

    Article  CAS  Google Scholar 

  77. Balalaie S, Abdolmohammadi S, Bijanzadeh HR, Amani AM (2008) Diammonium hydrogen phosphate as a versatile and efficient catalyst for the one-pot synthesis of pyrano[2,3-d]pyrimidinone derivatives in aqueous media. Mol Divers 12:85–91. https://doi.org/10.1007/s11030-008-9079-7

    Article  CAS  PubMed  Google Scholar 

  78. Zhi H, Lü C, Zhang Q, Luo J (2009) A new PEG-1000-based dicationic ionic liquid exhibiting temperature-dependent phase behavior with toluene and its application in one-pot synthesis of benzopyrans. Chem Commun. https://doi.org/10.1039/B822481A

    Article  Google Scholar 

  79. Balalaie S, Bararjanian M, Amani AM, Movassagh B (2006) (S)-proline as a neutral and efficient catalyst for the one-pot synthesis of tetrahydrobenzo[b]pyran derivatives in aqueous media. Synlett. https://doi.org/10.1055/s-2006-926227

    Article  Google Scholar 

  80. Maleki A, Valadi K, Gharibi S, Taheri-Ledari R (2020) Convenient and fast synthesis of various chromene pharmaceuticals assisted by highly porous volcanic micro-powder with nanoscale diameter porosity. Res Chem Intermed 46:4113–4128. https://doi.org/10.1007/s11164-020-04195-8

    Article  CAS  Google Scholar 

  81. Sameri F, Mobinikhaledi A, Bodaghifard MA (2021) High-efficient synthesis of 2-imino-2H-chromenes and dihydropyrano[c]chromenes using novel and green catalyst (CaO@SiO2@AIL). Res Chem Intermed 47:723–741. https://doi.org/10.1007/s11164-020-04295-5

    Article  CAS  Google Scholar 

  82. Khurana JM, Nand B, Saluja P (2014) 1,8-diazabicyclo[5.4.0]undec-7-ene: a highly efficient catalyst for one-pot synthesis of substituted tetrahydro-4H-chromenes, tetrahydro[b]pyrans, pyrano[d]pyrimidines, and 4H-pyrans in aqueous medium. J Heterocycl Chem 51:618–624. https://doi.org/10.1002/jhet.1507

    Article  CAS  Google Scholar 

  83. Maleki B, Ashrafi SS (2014) Nano α-Al2O3 supported ammonium dihydrogen phosphate (NH4H2PO4/Al2O3): preparation, characterization and its application as a novel and heterogeneous catalyst for the one-pot synthesis of tetrahydrobenzo[b]pyran and pyrano[2,3-c]pyrazole derivatives. RSC Adv 4:42873–42891. https://doi.org/10.1039/C4RA07813F

    Article  CAS  Google Scholar 

  84. Nagendrappa G, Chowreddy R (2021) Organic reactions using clay and clay-supported catalysts: a survey of recent literature. Catal Surv Asia 25:231–278. https://doi.org/10.1007/s10563-021-09333-9

    Article  CAS  Google Scholar 

  85. Kumar D, Reddy VB, Mishra BG et al (2007) Nanosized magnesium oxide as catalyst for the rapid and green synthesis of substituted 2-amino-2-chromenes. Tetrahedron 63:3093–3097. https://doi.org/10.1016/j.tet.2007.02.019

    Article  CAS  Google Scholar 

  86. Mozafari R, Heidarizadeh F (2019) Phosphotungstic acid supported on SiO2@NHPhNH2 functionalized nanoparticles of MnFe2O4 as a recyclable catalyst for the preparation of tetrahydrobenzo[b]pyran and indazolo[2,1-b]phthalazine-triones. Polyhedron 162:263–276. https://doi.org/10.1016/j.poly.2019.01.065

    Article  CAS  Google Scholar 

  87. Elhamifar D, Ramazani Z, Norouzi M, Mirbagheri R (2018) Magnetic iron oxide/phenylsulfonic acid: a novel, efficient and recoverable nanocatalyst for green synthesis of tetrahydrobenzo[b]pyrans under ultrasonic conditions. J Colloid Interface Sci 511:392–401. https://doi.org/10.1016/j.jcis.2017.10.013

    Article  CAS  PubMed  Google Scholar 

  88. Brahmachari G, Banerjee B (2016) Facile and chemically sustainable one-pot synthesis of a wide array of fused O- and N-heterocycles catalyzed by trisodium citrate dihydrate under ambient conditions. Asian J Org Chem 5:271–286. https://doi.org/10.1002/ajoc.201500465

    Article  CAS  Google Scholar 

  89. Abbaspour-Gilandeh E, Aghaei-Hashjin M, Yahyazadeh A, Salemi H (2016) (CTA)3[SiW12]Li+–MMT: a novel, efficient and simple nanocatalyst for facile and one-pot access to diverse and densely functionalized 2-amino-4H-chromene derivatives via an eco-friendly multicomponent reaction in water. RSC Adv 6:55444–55462. https://doi.org/10.1039/C6RA09818E

    Article  CAS  Google Scholar 

  90. Mollashahi E, Nikraftar M (2018) Nano-SiO2 catalyzed three-component preparations of pyrano[2,3-d]pyrimidines, 4H-chromenes, and dihydropyrano[3,2-c]chromenes. J Saudi Chem Soc 22:42–48. https://doi.org/10.1016/j.jscs.2017.06.003

    Article  CAS  Google Scholar 

  91. Shaikh A, Kamble V, Zemase R, Patil S, Aghav B (2023) A green and one-pot synthesis of 6-amino-1,4-dihydropyrano[2,3-c]-pyrazole-5-carbonitrile derivatives using CoCeO2 nanoparticles as an efficient, reusable and heterogeneous catalyst. Res Chem Intermed 7:1–18. https://doi.org/10.1007/s11164-023-05156-7

    Article  CAS  Google Scholar 

  92. Niknam K, Jamali A, Tajaddod M, Deris A (2012) Synthesis of 2-amino-4,6-diarylnicotinonitriles using silica-bound n-propyl triethylenetetramine sulfamic acid as a recyclable solid acid catalyst. Chin J Catal 33:1312–1317. https://doi.org/10.1016/S1872-2067(11)60421-X

    Article  CAS  Google Scholar 

  93. Ziarani GM, Abbasi A, Badiei A, Aslani Z (2011) An efficient synthesis of tetrahydrobenzo[b]pyran derivatives using sulfonic acid functionalized silica as an efficient catalyst. E- J Chem 8:367613. https://doi.org/10.1155/2011/367613

    Article  Google Scholar 

  94. Singh R, Bapat R, Qin L et al (2016) Atomic layer deposited (ALD) TiO2 on fibrous nano-silica (KCC-1) for photocatalysis: nanoparticle formation and size quantization effect. ACS Catal 6:2770–2784. https://doi.org/10.1021/acscatal.6b00418

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Special thanks are due to the University of Mazandaran's Research Council for its support of this study.

Author information

Authors and Affiliations

Authors

Contributions

P. Taheri wrote the first draft of the manuscript. M. Tajbakhsh and Z. Fallah validated and edited the manuscript. All authors reviewed the manuscript

Corresponding author

Correspondence to Mahmood Tajbakhsh.

Ethics declarations

Competing interest

There are no known conflicts of interest or personal relationships among the authors that could have influenced the results of this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 14742 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taheri, P., Tajbakhsh, M. & Fallah, Z. Modified Agro Waste-Derived Nano-silica for Synthesizing Tetrahydrobenzo[b]pyrans. Catal Surv Asia (2023). https://doi.org/10.1007/s10563-023-09419-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10563-023-09419-6

Keywords

Navigation