Skip to main content
Log in

Techniques for Overcoming Sulfur Poisoning of Catalyst Employed in Hydrocarbon Reforming

  • Review Article
  • Published:
Catalysis Surveys from Asia Aims and scope Submit manuscript

Abstract

Sulfur poisoning of catalyst is a well-known phenomenon observed during the production of syngas (CO + H2). The presence of traces of sulfur content in the feedstock can drastically reduce the catalyst activity and life. Several measures have been developed over the years to mitigate the catalyst deactivation process due to sulfur poisoning. In this paper, we review literature from 1996-present related to all the developments made for sulfur-resistant systems. The basis of poisoning being the sulfur content in the feedstock, potential fuel-containing feedstocks for syngas production were briefly discussed. The basics of sulfur poisoning mechanisms are also summarized. Then, a framework consisting of sulfur tolerance methodologies were discussed. In particular, we have discussed: (i) catalyst development by altering catalyst composition and support systems, (ii) influence of using catalyst structures, (iii) process modifications and optimization, (iv) desulfurization techniques for removal of sulfur from feed and/or product streams, and (v) effective catalyst regeneration techniques to extend the catalyst life. This review emphasizes the integration of the best set of methods to develop sulfur tolerance strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Vosloo AC (2001) Fischer–Tropsch: a futuristic view. Fuel Process Technol 71:149–155

    Article  CAS  Google Scholar 

  2. Bilik J, Pustejovska P, Brozova S, Jursova S (2013) Efficiency of hydrogen utilization in reduction processes in ferrous metallurgy. Sci Iran 20:337–342. https://doi.org/10.1016/j.scient.2012.12.028

    Article  CAS  Google Scholar 

  3. Bermúdez JM, Fidalgo B, Arenillas A, Menéndez JA (2012) CO2 reforming of coke oven gas over a Ni/γ-Al2O3 catalyst to produce syngas for methanol synthesis. Fuel 94:197–203

    Article  Google Scholar 

  4. Asadullah M (2014) Biomass gasification gas cleaning for downstream applications: a comparative critical review. Renew Sustain Energy Rev 40:118–132. https://doi.org/10.1016/j.rser.2014.07.132

    Article  CAS  Google Scholar 

  5. Baldinelli A, Barelli L, Bidini G (2015) Performance characterization and modelling of syngas-fed SOFCs (solid oxide fuel cells) varying fuel composition. Energy 90:2070–2084. https://doi.org/10.1016/j.energy.2015.07.126

    Article  CAS  Google Scholar 

  6. Arsalis A, Kær SK, Nielsen MP (2015) Modeling and optimization of a heat-pump-assisted high temperature proton exchange membrane fuel cell micro-combined-heat-and-power system for residential applications. Appl Energy 147:569–581. https://doi.org/10.1016/j.apenergy.2015.03.031

    Article  CAS  Google Scholar 

  7. Cui H, Turn SQ, Reese MA (2009) Removal of sulfur compounds from utility pipelined synthetic natural gas using modified activated carbons. Catal Today 139:274–279. https://doi.org/10.1016/j.cattod.2008.03.024

    Article  CAS  Google Scholar 

  8. Laredo GC, López CR, Álvarez RE, Cano JL (2004) Naphthenic acids, total acid number and sulfur content profile characterization in Isthmus and Maya crude oils. Fuel 83:1689–1695. https://doi.org/10.1016/j.fuel.2004.02.004

    Article  CAS  Google Scholar 

  9. Hu H, Zhou Q, Zhu S et al (2004) Product distribution and sulfur behavior in coal pyrolysis. Fuel Process Technol 85:849–861. https://doi.org/10.1016/j.fuproc.2003.11.030

    Article  CAS  Google Scholar 

  10. Sattar A, Leeke GA, Hornung A, Wood J (2014) Steam gasification of rapeseed, wood, sewage sludge and miscanthus biochars for the production of a hydrogen-rich syngas. Biomass Bioenerg 69:276–286. https://doi.org/10.1016/j.biombioe.2014.07.025

    Article  CAS  Google Scholar 

  11. Rasi S, VeijanenRintala AJ (2007) Trace compounds of biogas from different biogas production plants. Energy 32:1375–1380. https://doi.org/10.1016/j.energy.2006.10.018

    Article  CAS  Google Scholar 

  12. Struis RPWJ, Schildhauer TJ, Czekaj I et al (2009) Sulphur poisoning of Ni catalysts in the SNG production from biomass: a TPO/XPS/XAS study. Appl Catal A Gen 362:121–128. https://doi.org/10.1016/j.apcata.2009.04.030

    Article  CAS  Google Scholar 

  13. Chava R, Purbia D, Roy B et al (2021) Effect of calcination time on the catalytic activity of Ni/γ-Al2O3 cordierite monolith for dry reforming of biogas. Int J Hydrog Energy 46:6341–6357. https://doi.org/10.1016/j.ijhydene.2020.11.125

    Article  CAS  Google Scholar 

  14. Bartholomew CH (2001) Mechanism of catalyst deactivation.pdf. Appl Catal A Gen 212:17–60. https://doi.org/10.1016/S0926-860X(00)00843-7

    Article  CAS  Google Scholar 

  15. Tregubenko VY, Proskura AG, Belyi AS (2017) The role of sulfur in modification of active sites of reforming catalysts. Pet Chem 57:106–113. https://doi.org/10.1134/s0965544116090206

    Article  CAS  Google Scholar 

  16. Yu TC, Shaw H (1998) The effect of sulfur poisoning on methane oxidation over palladium supported on γ-alumina catalysts. Appl Catal B Environ 18:105–114

    Article  CAS  Google Scholar 

  17. Simson A, Crowley S, Castaldi MJ (2016) The impact of sulfur on ethanol steam reforming. Catal Lett 146:1361–1372. https://doi.org/10.1007/s10562-016-1749-y

    Article  CAS  Google Scholar 

  18. Pacioni TR, Soares D, Di DM et al (2016) Bio-syngas production from agro-industrial biomass residues by steam gasification. Waste Manage 58:221–229. https://doi.org/10.1016/j.wasman.2016.08.021

    Article  CAS  Google Scholar 

  19. Lv P, Yuan Z, Wu C et al (2007) Bio-syngas production from biomass catalytic gasification. Energy Convers Manage 48:1132–1139. https://doi.org/10.1016/j.enconman.2006.10.014

    Article  CAS  Google Scholar 

  20. Pinto F, André RN, Carolino C, Miranda M (2014) Hot treatment and upgrading of syngas obtained by co-gasification of coal and wastes. Fuel Process Technol 126:19–29. https://doi.org/10.1016/j.fuproc.2014.04.016

    Article  CAS  Google Scholar 

  21. Tomishige K, Asadullah M, Kunimori K (2004) Syngas production by biomass gasification using Rh/CeO2/SiO2 catalysts and fluidized bed reactor. Catal Today 89:389–403. https://doi.org/10.1016/j.cattod.2004.01.002

    Article  CAS  Google Scholar 

  22. Özçimen D, Karaosmanoǧlu F (2004) Production and characterization of bio-oil and biochar from rapeseed cake. Renew Energy 29:779–787. https://doi.org/10.1016/j.renene.2003.09.006

    Article  CAS  Google Scholar 

  23. Saad JM, Williams PT (2016) Catalytic dry reforming of waste plastics from different waste treatment plants for production of synthesis gases. Waste Manage 58:214–220. https://doi.org/10.1016/j.wasman.2016.09.011

    Article  CAS  Google Scholar 

  24. Yao D, Yang H, Chen H, Williams PT (2018) Investigation of nickel-impregnated zeolite catalysts for hydrogen/syngas production from the catalytic reforming of waste polyethylene. Appl Catal B Environ 227:477–487. https://doi.org/10.1016/j.apcatb.2018.01.050

    Article  CAS  Google Scholar 

  25. Galvagno S, Casciaro G, Casu S et al (2009) Steam gasification of tyre waste, poplar, and refuse-derived fuel: a comparative analysis. Waste Manage 29:678–689. https://doi.org/10.1016/j.wasman.2008.06.003

    Article  CAS  Google Scholar 

  26. Sampanthar JT, Xiao H, Dou J et al (2006) A novel oxidative desulfurization process to remove refractory sulfur compounds from diesel fuel. Appl Catal B Environ 63:85–93. https://doi.org/10.1016/j.apcatb.2005.09.007

    Article  CAS  Google Scholar 

  27. Sahitya S, Baig H, Jani R et al (2017) Hydrogen-rich syngas from jatropha curcas shell biomass char in fresnel lens solar concentrator assembly. Energy Fuels 31:8335–8347. https://doi.org/10.1021/acs.energyfuels.7b01406

    Article  CAS  Google Scholar 

  28. Nayan NK, Kumar S, Singh RK (2013) Production of the liquid fuel by thermal pyrolysis of neem seed. Fuel 103:437–443. https://doi.org/10.1016/j.fuel.2012.08.058

    Article  CAS  Google Scholar 

  29. Tian T, Li Q, He R et al (2017) Effects of biochemical composition on hydrogen production by biomass gasification. Int J Hydrog Energy 42:19723–19732. https://doi.org/10.1016/j.ijhydene.2017.06.174

    Article  CAS  Google Scholar 

  30. Osorio F, Torres JC (2009) Biogas purification from anaerobic digestion in a wastewater treatment plant for biofuel production. Renew Energy 34:2164–2171. https://doi.org/10.1016/j.renene.2009.02.023

    Article  CAS  Google Scholar 

  31. Borgianni C, De FP, Pochetti F, Paolucci M (2002) Gasification process of wastes containing PVC. Fuel 81:1827–1833

    Article  CAS  Google Scholar 

  32. Chen X, Jiang J, Yan F et al (2017) Dry reforming of model biogas on a Ni/SiO2 catalyst: overall performance and mechanisms of sulfur poisoning and regeneration. ACS Sustain Chem Eng 5:10248–10257. https://doi.org/10.1021/acssuschemeng.7b02251

    Article  CAS  Google Scholar 

  33. Chitsazan S, Sepehri S, Garbarino G et al (2016) Steam reforming of biomass-derived organics: interactions of different mixture components on Ni/Al2O3 based catalysts. Appl Catal B Environ 187:386–398. https://doi.org/10.1016/j.apcatb.2016.01.050

    Article  CAS  Google Scholar 

  34. Wandeler R, Baiker A, Process BT et al (2018) Regeneration of a sulfur-poisoned methane combustion catalyst: Structural evidence of Pd4S formation. Appl Catal B Environ 4:34–50. https://doi.org/10.1016/j.cattod.2019.04.071

    Article  CAS  Google Scholar 

  35. Hoyos LJ, Praliaud H, Primet M (1993) Catalytic combustion of methane over palladium supported on alumina and silica in presence of hydrogen sulfide. Appl Catal A Gen 98:125–138. https://doi.org/10.1016/0926-860X(93)80028-O

    Article  CAS  Google Scholar 

  36. Lott P, Eck M, Doronkin DE et al (2020) Understanding sulfur poisoning of bimetallic Pd-Pt methane oxidation catalysts and their regeneration. Appl Catal B Environ 278:119244. https://doi.org/10.1016/j.apcatb.2020.119244

    Article  CAS  Google Scholar 

  37. Monai M, Montini T, Melchionna M et al (2017) The effect of sulfur dioxide on the activity of hierarchical Pd-based catalysts in methane combustion. Appl Catal B Environ 202:72–83. https://doi.org/10.1016/j.apcatb.2016.09.016

    Article  CAS  Google Scholar 

  38. Boldrin P, Ruiz-Trejo E, Mermelstein J et al (2016) Strategies for carbon and sulfur tolerant solid oxide fuel cell materials, incorporating lessons from heterogeneous catalysis. Chem Rev 116:13633–13684. https://doi.org/10.1021/acs.chemrev.6b00284

    Article  CAS  PubMed  Google Scholar 

  39. Yeo TY, Ashok J, Kawi S (2019) Recent developments in sulphur-resilient catalytic systems for syngas production. Renew Sustain Energy Rev 100:52–70. https://doi.org/10.1016/j.rser.2018.10.016

    Article  CAS  Google Scholar 

  40. Appari S, Janardhanan VM, Bauri R et al (2014) A detailed kinetic model for biogas steam reforming on Ni and catalyst deactivation due to sulfur poisoning. Appl Catal A Gen 471:118–125. https://doi.org/10.1016/j.apcata.2013.12.002

    Article  CAS  Google Scholar 

  41. Bian Z, Das S, Wai MH et al (2017) A review on bimetallic nickel-based catalysts for CO2 reforming of methane. ChemPhysChem 18:3117–3134. https://doi.org/10.1002/cphc.201700529

    Article  CAS  PubMed  Google Scholar 

  42. Breysse M, Afanasiev P, Geantet C, Vrinat M (2003) Overview of support effects in hydrotreating catalysts. Catal Today 86:5–16. https://doi.org/10.1016/S0920-5861(03)00400-0

    Article  CAS  Google Scholar 

  43. Natesakhawat S, Lekse JW, Baltrus JP et al (2012) Active sites and structure-activity relationships of copper-based catalysts for carbon dioxide hydrogenation to methanol. ACS Catal 2:1667–1676. https://doi.org/10.1021/cs300008g

    Article  CAS  Google Scholar 

  44. Cai W, Wang F, Daniel C et al (2012) Oxidative steam reforming of ethanol over Ir/CeO2 catalysts: a structure sensitivity analysis. J Catal 286:137–152. https://doi.org/10.1016/j.jcat.2011.10.021

    Article  CAS  Google Scholar 

  45. Szizybalski A, Girgsdies F, Rabis A et al (2005) In situ investigations of structure-activity relationships of a Cu/ZrO2 catalyst for the steam reforming of methanol. J Catal 233:297–307. https://doi.org/10.1016/j.jcat.2005.04.024

    Article  CAS  Google Scholar 

  46. Takanabe K, Nagaoka K, Nariai K, Aika KI (2005) Influence of reduction temperature on the catalytic behavior of Co/TiO2 catalysts for CH4/CO2 reforming and its relation with titania bulk crystal structure. J Catal 230:75–85. https://doi.org/10.1016/j.jcat.2004.11.005

    Article  CAS  Google Scholar 

  47. Gamarra D, Munuera G, Hungría AB et al (2007) Structure-activity relationship in nanostructured copper-ceria-based preferential CO oxidation catalysts. J Phys Chem C 111:11026–11038

    Article  CAS  Google Scholar 

  48. Saha B, Khan A, Ibrahim H, Idem R (2014) Evaluating the performance of non-precious metal based catalysts for sulfur-tolerance during the dry reforming of biogas. Fuel 120:202–217. https://doi.org/10.1016/j.fuel.2013.12.016

    Article  CAS  Google Scholar 

  49. Sehested J (2006) Four challenges for nickel steam-reforming catalysts. Catal Today 111:103–110. https://doi.org/10.1016/j.cattod.2005.10.002

    Article  CAS  Google Scholar 

  50. Wang L, Murata K, Inaba M (2004) Development of novel highly active and sulphur-tolerant catalysts for steam reforming of liquid hydrocarbons to produce hydrogen. Appl Catal A Gen 257:43–47. https://doi.org/10.1016/S0926-860X(03)00590-8

    Article  CAS  Google Scholar 

  51. Lakshminarayanan N, Ozkan US (2011) Effect of H2O on sulfur poisoning and catalytic activity of Ni-YSZ catalysts. Appl Catal A Gen 393:138–145. https://doi.org/10.1016/j.apcata.2010.11.034

    Article  CAS  Google Scholar 

  52. Kuhn JN, Lakshminarayanan N, Ozkan US (2008) Effect of hydrogen sulfide on the catalytic activity of Ni-YSZ cermets. J Mol Catal 282:9–21. https://doi.org/10.1016/j.molcata.2007.11.032

    Article  CAS  Google Scholar 

  53. Gaillard M, Virginie M, Khodakov AY (2017) New molybdenum-based catalysts for dry reforming of methane in presence of sulfur: a promising way for biogas valorization. Catal Today 289:143–150. https://doi.org/10.1016/j.cattod.2016.10.005

    Article  CAS  Google Scholar 

  54. Misture ST, McDevitt KM, Glass KC et al (2015) Sulfur-resistant and regenerable Ni/Co spinel-based catalysts for methane dry reforming. Catal Sci Technol 5:4565–4574. https://doi.org/10.1039/c5cy00800j

    Article  CAS  Google Scholar 

  55. Elbaba IF, Williams PT (2014) Deactivation of nickel catalysts by sulfur and carbon for the pyrolysis-catalytic gasification/reforming of waste tires for hydrogen production. Energy Fuels 28:2104–2113. https://doi.org/10.1021/ef4023477

    Article  CAS  Google Scholar 

  56. Srinakruang J, Sato K, Vitidsant T, Fujimoto K (2006) Highly efficient sulfur and coking resistance catalysts for tar gasification with steam. Fuel 85:2419–2426. https://doi.org/10.1016/j.fuel.2006.04.026

    Article  CAS  Google Scholar 

  57. Srinakruang J, Sato K, Vitidsant T, Fujimoto K (2005) A highly efficient catalyst for tar gasification with steam. Catal Commun 6:437–440. https://doi.org/10.1016/j.catcom.2005.03.014

    Article  CAS  Google Scholar 

  58. Tomishige K, Chen YG, Fujimoto K (1999) Studies on carbon deposition in CO2 reforming of CH4 over nickel-magnesia solid solution catalysts. J Catal 181:91–103. https://doi.org/10.1006/jcat.1998.2286

    Article  CAS  Google Scholar 

  59. Chen YG, Tomishige K, Yokoyama K, Fujimoto K (1999) Catalytic performance and catalyst structure of nickel-magnesia catalysts for CO2 reforming of methane. J Catal 184:479–490. https://doi.org/10.1006/jcat.1999.2469

    Article  CAS  Google Scholar 

  60. Grgicak CM, Green RG, Giorgi JB (2008) SOFC anodes for direct oxidation of hydrogen and methane fuels containing H2S. J Power Sources 179:317–328. https://doi.org/10.1016/j.jpowsour.2007.12.082

    Article  CAS  Google Scholar 

  61. Grgicak CM, Pakulska MM, O’Brien JS, Giorgi JB (2008) Synergistic effects of Ni1-xCox-YSZ and Ni1-xCux-YSZ alloyed cermet SOFC anodes for oxidation of hydrogen and methane fuels containing H2S. J Power Sources 183:26–33

    Article  CAS  Google Scholar 

  62. Garbarino G, Finocchio E, Lagazzo A et al (2014) Steam reforming of ethanol-phenol mixture on Ni/Al2O3: effect of magnesium and boron on catalytic activity in the presence and absence of sulphur. Appl Catal B Environ 147:813–826. https://doi.org/10.1016/j.apcatb.2013.09.030

    Article  CAS  Google Scholar 

  63. Cimino S, Mancino G, Lisi L (2013) Sulphur tolerance of a P-doped Rh/γ-Al2O3 catalyst during the partial oxidation of methane to syngas. Appl Catal B Environ 138–139:342–352. https://doi.org/10.1016/j.apcatb.2013.02.039

    Article  CAS  Google Scholar 

  64. Erdőhelyi A, Fodor K, Szailer T (2004) Effect of H2S on the reaction of methane with carbon dioxide over supported Rh catalysts. Appl Catal B Environ 53:153–160. https://doi.org/10.1016/j.apcatb.2004.05.009

    Article  CAS  Google Scholar 

  65. Chen Y, Chen Y, Li W, Sheng S (1990) Sulphur-resistant character of Titania-supported Platinum catalysts. Appl Catal 63:107–115. https://doi.org/10.1016/S0166-9834(00)81709-1

    Article  CAS  Google Scholar 

  66. Torbati R, Cimino S, Lisi L, Russo G (2009) The effect of support on sulphur tolerance of Rh based catalysts for methane partial oxidation. Catal Lett. https://doi.org/10.1007/s10562-008-9657-4

    Article  Google Scholar 

  67. Hamzehlouyan T, Sampara CS, Li J et al (2016) Kinetic study of adsorption and desorption of SO2 over γ-Al2O3 and Pt/γ-Al2O3. Appl Catal B Environ 181:587–598. https://doi.org/10.1016/j.apcatb.2015.08.003

    Article  CAS  Google Scholar 

  68. Wilburn MS, Epling WS (2017) SO2 adsorption and desorption characteristics of Pd and Pt catalysts: precious metal crystallite size dependence. Appl Catal A Gen 534:85–93. https://doi.org/10.1016/j.apcata.2017.01.015

    Article  CAS  Google Scholar 

  69. Yang Y, Wang G, Ge S et al (2021) Study on anti-sulfur dioxide poisoning of palladium-based catalyst for toluene catalytic combustion. Int J Hydrog Energy 46:6329–6340. https://doi.org/10.1016/j.ijhydene.2020.11.126

    Article  CAS  Google Scholar 

  70. Wilburn MS, Epling WS (2017) Sulfur deactivation and regeneration of mono- and bimetallic Pd-Pt methane oxidation catalysts. Appl Catal B Environ 206:589–598. https://doi.org/10.1016/j.apcatb.2017.01.050

    Article  CAS  Google Scholar 

  71. Mancino G, Cimino S, Lisi L (2016) Sulphur poisoning of alumina supported Rh catalyst during dry reforming of methane. Catal Today 277:126–132. https://doi.org/10.1016/j.cattod.2015.10.035

    Article  CAS  Google Scholar 

  72. Cimino S, Torbati R, Lisi L, Russo G (2009) Sulphur inhibition on the catalytic partial oxidation of methane over Rh-based monolith catalysts. Appl Catal A Gen 360:43–49. https://doi.org/10.1016/j.apcata.2009.02.045

    Article  CAS  Google Scholar 

  73. Palma V, Barba D, Gerardi V (2016) Honeycomb-structured catalysts for the selective partial oxidation of H2S. J Clean Prod. https://doi.org/10.1016/j.jclepro.2015.07.105

    Article  Google Scholar 

  74. Ocsachoque MA, Eugenio Russman JI, Irigoyen B et al (2016) Experimental and theoretical study about sulfur deactivation of Ni/CeO2 and Rh/CeO2 catalysts. Mater Chem Phys 172:69–76. https://doi.org/10.1016/j.matchemphys.2015.12.062

    Article  CAS  Google Scholar 

  75. Lakhapatri SL, Abraham MA (2013) Sulfur poisoning of Rh-Ni catalysts during steam reforming of sulfur-containing liquid fuels. Catal Sci Technol 3:2755–2760. https://doi.org/10.1039/c3cy00351e

    Article  CAS  Google Scholar 

  76. Sakanishi K, Wu Z, Matsumura A et al (2005) Simultaneous removal of H2S and COS using activated carbons and their supported catalysts. Catal Today 104:94–100. https://doi.org/10.1016/j.cattod.2005.03.060

    Article  CAS  Google Scholar 

  77. Sapountzi FM, Zhao C, Boréave A et al (2018) Sulphur tolerance of Au-modified Ni/GDC during catalytic methane steam reforming. Catal Sci Technol 8:1578–1588. https://doi.org/10.1039/C8CY00107C

    Article  CAS  Google Scholar 

  78. Laosiripojana N, Sutthisripok W, Charojrochkul S, Assabumrungrat S (2014) Conversion of biomass tar containing sulphur to syngas by GdCeO2 coated NiFe bimetallic-based catalysts. Appl Catal A Gen 478:9–14. https://doi.org/10.1016/j.apcata.2014.03.023

    Article  CAS  Google Scholar 

  79. Postole G, Bosselet F, Bergeret G et al (2014) On the promoting effect of H2S on the catalytic H2 production over Gd-doped ceria from CH4/H2O mixtures for solid oxide fuel cell applications. J Catal 316:149–163. https://doi.org/10.1016/j.jcat.2014.05.011

    Article  CAS  Google Scholar 

  80. Blanchard J, Achouri I, Abatzoglou N (2016) H2S poisoning of NiAl2O4/Al2O3-YSZ catalyst during methane dry reforming. Can J Chem Eng 94:650–654. https://doi.org/10.1002/cjce.22438

    Article  CAS  Google Scholar 

  81. Ashrafi M, Pfeifer C, Pröll T, Hofbauer H (2008) Experimental study of model biogas catalytic steam reforming: 2. Impact of sulfur on the deactivation and regeneration of Ni-based catalysts. Energy Fuels 22:4190–4195. https://doi.org/10.1021/ef8000828

    Article  CAS  Google Scholar 

  82. Rasmussen JFB, Hagen A (2009) The effect of H2S on the performance of Ni-YSZ anodes in solid oxide fuel cells. J Power Sources 191:534–541. https://doi.org/10.1016/j.jpowsour.2009.02.001

    Article  CAS  Google Scholar 

  83. Cheng Z, Liu M (2007) Characterization of sulfur poisoning of Ni–YSZ anodes for solid oxide fuel cells using in situ Raman microspectroscopy. Situ 178:925–935. https://doi.org/10.1016/j.ssi.2007.04.004

    Article  CAS  Google Scholar 

  84. Koningen J, Sjo K (1998) 98/02209 Sulfur-deactivated steam reforming of gasified biomass. Fuel Energy Abstr 39:200. https://doi.org/10.1016/S0140-6701(98)80408-6

    Article  Google Scholar 

  85. Hua B, Yan N, Li M et al (2016) Toward highly efficient: in situ dry reforming of H2S contaminated methane in solid oxide fuel cells via incorporating a coke/sulfur resistant bimetallic catalyst layer. J Mater Chem A 4:9080–9087. https://doi.org/10.1039/c6ta02809h

    Article  CAS  Google Scholar 

  86. Matsuzaki Y (2000) The poisoning effect of sulfur-containing impurity gas on a SOFC anode: Part I. Dependence on temperature, time, and impurity concentration. Solid State Ion 132:261–269. https://doi.org/10.1016/s0167-2738(00)00653-6

    Article  CAS  Google Scholar 

  87. Requies J, Rabe S, Vogel F et al (2009) Reforming of methane over noble metal catalysts: catalyst deactivation induced by thiophene. Catal Today 143:9–16. https://doi.org/10.1016/j.cattod.2008.10.026

    Article  CAS  Google Scholar 

  88. Shamsi A (2009) Partial oxidation of methane and the effect of sulfur on catalytic activity and selectivity. Catal Today 139:268–273. https://doi.org/10.1016/j.cattod.2008.03.033

    Article  CAS  Google Scholar 

  89. Acha E, van Delft YC, Cambra JF, Arias PL (2018) Thin PdCu membrane for hydrogen purification from in-situ produced methane reforming complex mixtures containing H2S. Chem Eng Sci 176:429–438. https://doi.org/10.1016/j.ces.2017.11.019

    Article  CAS  Google Scholar 

  90. Younis MN, Malaibari ZO, Ahmad W, Ahmed S (2018) Hydrogen production through steam reforming of diesel over highly efficient promoted Ni/γ-Al2O3 catalysts containing lanthanide series (La, Ce, Eu, Pr, and Gd) promoters. Energy Fuels 32:7054–7065. https://doi.org/10.1021/acs.energyfuels.8b00890

    Article  CAS  Google Scholar 

  91. Hashemnejad SM, Parvari M (2011) Deactivation and regeneration of nickel-based catalysts for steam-methane reforming. Chin J Catal 32:273–279. https://doi.org/10.1016/S1872-2067(10)60175-1

    Article  CAS  Google Scholar 

  92. Martínez-Salazar AL, Melo-Banda JA, Reyes De La Torre AI et al (2015) Hydrogen production by methane reforming with H2S using Mo, Cr/ZrO2-SBA15 and Mo, Cr/ZrO2-La2O3 catalysts. Int J Hydrog Energy 40:17272–17283. https://doi.org/10.1016/j.ijhydene.2015.09.154

    Article  CAS  Google Scholar 

  93. Jablonski WS, Villano SM, Dean AM (2015) A comparison of H2S, SO2, and COS poisoning on Ni/YSZ and Ni/K2O-CaAl2O4 during methane steam and dry reforming. Appl Catal A Gen 502:399–409. https://doi.org/10.1016/j.apcata.2015.06.009

    Article  CAS  Google Scholar 

  94. Chattanathan SA, Adhikari S, McVey M, Fasina O (2014) Hydrogen production from biogas reforming and the effect of H2S on CH4 conversion. Int J Hydrog Energy 39:19905–19911. https://doi.org/10.1016/j.ijhydene.2014.09.162

    Article  CAS  Google Scholar 

  95. Vita A, Italiano C, Pino L et al (2017) Hydrogen-rich gas production by steam reforming of n-dodecane. Part II: Stability, regenerability and sulfur poisoning of low loading Rh-based catalyst. Appl Catal B Environ 218:317–326. https://doi.org/10.1016/j.apcatb.2017.06.059

    Article  CAS  Google Scholar 

  96. Zheng Q, Janke C, Farrauto R (2014) Steam reforming of sulfur-containing dodecane on a Rh-Pt catalyst: influence of process parameters on catalyst stability and coke structure. Appl Catal B Environ 160–161:525–533. https://doi.org/10.1016/j.apcatb.2014.05.044

    Article  CAS  Google Scholar 

  97. Liu L, Hong L (2016) Ceria-supported nickel borate as a sulfur-tolerant catalyst for autothermal reforming of a proxy jet fuel. Catal Today 263:52–60. https://doi.org/10.1016/j.cattod.2015.07.047

    Article  CAS  Google Scholar 

  98. Kantserova MR, Orlyk SM, Vasylyev OD, Nauky P (2018) Catalytic activity and resistance to sulfur poisoning of nickel-containing composites based on stabilized zirconia in tri-reforming of methane. Theor Exp Chem 53:361–367. https://doi.org/10.1007/s11237-018-9536-z

    Article  CAS  Google Scholar 

  99. Jung SY, Ju DG, Lim EJ et al (2015) Study of sulfur-resistant Ni-Al-based catalysts for autothermal reforming of dodecane. Int J Hydrog Energy 40:13412–13422. https://doi.org/10.1016/j.ijhydene.2015.08.044

    Article  CAS  Google Scholar 

  100. Pawar V, Appari S, Monder DS, Janardhanan VM (2017) Study of the combined deactivation due to sulfur poisoning and carbon deposition during biogas dry reforming on supported Ni catalyst. Ind Eng Chem Res 56:8448–8455. https://doi.org/10.1021/acs.iecr.7b01662

    Article  CAS  Google Scholar 

  101. Gillan C, Fowles M, French S, Jackson SD (2013) Ethane steam reforming over a platinum/alumina catalyst: Effect of sulfur poisoning. Ind Eng Chem Res 52:13350–13356. https://doi.org/10.1021/ie401999t

    Article  CAS  Google Scholar 

  102. Garbarino G, Lagazzo A, Riani P, Busca G (2013) Steam reforming of ethanol-phenol mixture on Ni/Al2O3: effect of Ni loading and sulphur deactivation. Appl Catal B Environ 129:460–472. https://doi.org/10.1016/j.apcatb.2012.09.036

    Article  CAS  Google Scholar 

  103. Fukahori S, Koga H, Kitaoka T et al (2008) Steam reforming behavior of methanol using paper-structured catalysts: experimental and computational fluid dynamic analysis. Int J Hydrog Energy 33:1661–1670. https://doi.org/10.1016/j.ijhydene.2007.12.063

    Article  CAS  Google Scholar 

  104. Tetsuya S, Masanori S, Hiroyuki M et al (2001) CO2 reforming of CH4 over Ni/Mg–Al oxide catalysts prepared by solid phase crystallization method from Mg–Al hydrotalcite-like precursors. Catal Lett 73:21–26. https://doi.org/10.1023/A:1009066017469

    Article  Google Scholar 

  105. Li D, Wang L, Koike M et al (2011) Steam reforming of tar from pyrolysis of biomass over Ni/Mg/Al catalysts prepared from hydrotalcite-like precursors. Appl Catal B Environ 102:528–538. https://doi.org/10.1016/j.apcatb.2010.12.035

    Article  CAS  Google Scholar 

  106. Dębek R, Radlik M, Motak M et al (2015) Ni-containing Ce-promoted hydrotalcite derived materials as catalysts for methane reforming with carbon dioxide at low temperature—on the effect of basicity. Catal Today 257:59–65. https://doi.org/10.1016/j.cattod.2015.03.017

    Article  CAS  Google Scholar 

  107. Shiratori Y, Sakamoto M, Uchida T et al (2015) Hydrotalcite-dispersed paper-structured catalyst for the dry reforming of methane. Int J Hydrog Energy 40:10807–10815. https://doi.org/10.1016/j.ijhydene.2015.07.016

    Article  CAS  Google Scholar 

  108. Shiratori Y, Sakamoto M (2016) Performance improvement of direct internal reforming solid oxide fuel cell fuelled by H2S-contaminated biogas with paper-structured catalyst technology. J Power Sources 332:170–179. https://doi.org/10.1016/j.jpowsour.2016.09.095

    Article  CAS  Google Scholar 

  109. Urasaki K, Sekine Y, Kawabe S et al (2005) Catalytic activities and coking resistance of Ni/perovskites in steam reforming of methane. Appl Catal A Gen 286:23–29. https://doi.org/10.1016/j.apcata.2005.02.020

    Article  CAS  Google Scholar 

  110. Mundschau MV, Burk CG Jr, Gribblejr D (2008) Diesel fuel reforming using catalytic membrane reactors §. Catal Today 136:190–205. https://doi.org/10.1016/j.cattod.2008.02.003

    Article  CAS  Google Scholar 

  111. Morpeth LD, Sun Y, Hla SS et al (2012) Effect of H2S on the performance of La0.7Ce 0.2FeO3 perovskite catalyst for high temperature water-gas shift reaction. Int J Hydrog Energy 37:1475–1481. https://doi.org/10.1016/j.ijhydene.2011.10.022

    Article  CAS  Google Scholar 

  112. Tsodikov MV, Kurdymov SS, Konstantinov GI et al (2015) Core-shell bifunctional catalyst for steam methane reforming resistant to H2S: Activity and structure evolution. Int J Hydrog Energy 40:2963–2970. https://doi.org/10.1016/j.ijhydene.2015.01.016

    Article  CAS  Google Scholar 

  113. Ammendola P, Cammisa E, Chirone R et al (2012) Effect of sulphur on the performance of Rh-LaCoO3 based catalyst for tar conversion to syngas. Appl Catal B Environ 113–114:11–18. https://doi.org/10.1016/j.apcatb.2011.07.024

    Article  CAS  Google Scholar 

  114. Niu B, Jin F, Fu R et al (2018) Pd-impregnated Sr 1.9 VMoO 6–δ double perovskite as an efficient and stable anode for solid-oxide fuel cells operating on sulfur-containing syngas. Electrochim Acta 274:91–102. https://doi.org/10.1016/j.electacta.2018.04.066

    Article  CAS  Google Scholar 

  115. Cao Z, Fan L, Zhang G et al (2019) Titanium-substituted ferrite perovskite: an excellent sulfur and coking tolerant anode catalyst for SOFCs. Catal Today. https://doi.org/10.1016/j.cattod.2018.04.023

    Article  Google Scholar 

  116. Hbaieb K (2017) Activity and sulfur tolerance of lanthanum strontium titanate based perovskite catalysts for dodecane reforming. React Kinet Mech Catal 122:943–960. https://doi.org/10.1007/s11144-017-1244-5

    Article  CAS  Google Scholar 

  117. Quitete CPB, Manfro RL, Souza MMVM (2017) Perovskite-based catalysts for tar removal by steam reforming: effect of the presence of hydrogen sulfide. Int J Hydrog Energy 42:9873–9880. https://doi.org/10.1016/j.ijhydene.2017.02.187

    Article  CAS  Google Scholar 

  118. Mawdsley JR, Krause TR (2008) Rare earth-first-row transition metal perovskites as catalysts for the autothermal reforming of hydrocarbon fuels to generate hydrogen. Appl Catal A Gen 334:311–320. https://doi.org/10.1016/j.apcata.2007.10.018

    Article  CAS  Google Scholar 

  119. Niu B, Jin F, Yang X et al (2018) Resisting coking and sulfur poisoning of double perovskite Sr2TiFe0.5Mo05.O6–δ anode material for solid oxide fuel cells. Int J Hydrog Energy 43:3280–3290. https://doi.org/10.1016/j.ijhydene.2017.12.134

    Article  CAS  Google Scholar 

  120. Konstantinov GI, Kurdyumov SS, Maksimov YV et al (2018) Hydrogen sulfide-resistant bifunctional catalysts for the steam reforming of methane: activity and structural evolution. Catal Ind 10:1–8. https://doi.org/10.1134/S2070050418010063

    Article  Google Scholar 

  121. Sadooghi P, Rauch R (2015) Experimental and modeling study of hydrogen production from catalytic steam reforming of methane mixture with hydrogen sulfide. Int J Hydrog Energy 40:10418–10426. https://doi.org/10.1016/j.ijhydene.2015.06.143

    Article  CAS  Google Scholar 

  122. Ni M, Leung DYCC, Leung MKHH (2007) A review on reforming bio-ethanol for hydrogen production. Int J Hydrog Energy 32:3238–3247. https://doi.org/10.1016/j.ijhydene.2007.04.038

    Article  CAS  Google Scholar 

  123. Trimm DL (1997) Coke formation and minimisation during steam reforming reactions. Catal Today 37:233–238. https://doi.org/10.1016/S0920-5861(97)00014-X

    Article  CAS  Google Scholar 

  124. Laycock CJ, Staniforth JZ, Ormerod RM (2011) Biogas as a fuel for solid oxide fuel cells and synthesis gas production: Effects of ceria-doping and hydrogen sulfide on the performance of nickel-based anode materials. Dalton Trans 40:5494–5504. https://doi.org/10.1039/c0dt01373k

    Article  CAS  PubMed  Google Scholar 

  125. Abdollahi M, Yu J, Liu PKT et al (2010) Hydrogen production from coal-derived syngas using a catalytic membrane reactor based process. J Membr Sci 363:160–169. https://doi.org/10.1016/j.memsci.2010.07.023

    Article  CAS  Google Scholar 

  126. Laosiripojana N, Charojrochkul S, Kim-Lohsoontorn P, Assabumrungrat S (2010) Role and advantages of H2S in catalytic steam reforming over nanoscale CeO2-based catalysts. J Catal 276:6–15. https://doi.org/10.1016/j.jcat.2010.08.015

    Article  CAS  Google Scholar 

  127. Alonso L, Arce A, Francisco M et al (2007) Gasoline desulfurization using extraction with [C8mim][BF 4] ionic liquid. AIChE J 53:3108–3115. https://doi.org/10.1002/aic.11337

    Article  CAS  Google Scholar 

  128. Bhatia S, Sharma DK (2010) Biodesulfurization of dibenzothiophene, its alkylated derivatives and crude oil by a newly isolated strain Pantoea agglomerans D23W3. Biochem Eng J 50:104–109. https://doi.org/10.1016/j.bej.2010.04.001

    Article  CAS  Google Scholar 

  129. Landau MV, Herskowitz M, Hoffman T et al (2009) Ultradeep hydrodesulfurization and adsorptive desulfurization of diesel fuel on metal-rich nickel phosphides. Ind Eng Chem Res 48:5239–5249. https://doi.org/10.1021/ie9000579

    Article  CAS  Google Scholar 

  130. Olajire AA, Abidemi JJ, Lateef A, Benson NU (2017) Adsorptive desulphurization of model oil by Ag nanoparticles-modified activated carbon prepared from brewer’s spent grains. J Environ Chem Eng 5:147–159. https://doi.org/10.1016/j.jece.2016.11.033

    Article  CAS  Google Scholar 

  131. Safa MA, Ma X (2016) Oxidation kinetics of dibenzothiophenes using cumene hydroperoxide as an oxidant over MoO3/Al2O3 catalyst. Fuel 171:238–246. https://doi.org/10.1016/j.fuel.2015.12.050

    Article  CAS  Google Scholar 

  132. Babich IV, Moulijn JA (2003) Science and technology of novel processes for deep desulfurization of oil refinery streams: a review. Fuel 82:607–631. https://doi.org/10.1016/S0016-2361(02)00324-1

    Article  CAS  Google Scholar 

  133. Yang H, Jiang B, Sun Y et al (2016) Synthesis and oxidative desulfurization of novel lactam-based Brønsted-Lewis acidic ionic liquids. Chem Eng J 306:131–138. https://doi.org/10.1016/j.cej.2016.07.044

    Article  CAS  Google Scholar 

  134. Jeong KE, Kim TW, Kim JW et al (2013) Selective oxidation of refractory sulfur compounds for the production of low sulfur transportation fuel. Korean J Chem Eng 30:509–517. https://doi.org/10.1007/s11814-013-0025-8

    Article  CAS  Google Scholar 

  135. Kim K, Jeon SK, Vo C et al (2007) Removal of hydrogen sulfide from a steam-hydrogasifier product gas by zinc oxide sorbent. Ind Eng Chem Res 46:5848–5854. https://doi.org/10.1021/ie0614531

    Article  CAS  Google Scholar 

  136. Hernández SP, Chiappero M, Russo N, Fino D (2011) A novel ZnO-based adsorbent for biogas purification in H2 production systems. Chem Eng J 176–177:272–279. https://doi.org/10.1016/j.cej.2011.06.085

    Article  CAS  Google Scholar 

  137. Köchermann J, Schneider J, Matthischke S, Rönsch S (2015) Sorptive H2S removal by impregnated activated carbons for the production of SNG. Fuel Process Technol 138:37–41. https://doi.org/10.1016/j.fuproc.2015.05.004

    Article  CAS  Google Scholar 

  138. Sasaoka E, Sada N, Manabe A et al (2002) Modification of ZnO−TiO2 high-temperature desulfurization sorbent by ZrO2 addition. Ind Eng Chem Res 38:958–963

    Article  Google Scholar 

  139. Li L, Sun TH, Shu CH, Zhang HB (2016) Low temperature H2S removal with 3-D structural mesoporous molecular sieves supported ZnO from gas stream. J Hazard Mater 311:142–150. https://doi.org/10.1016/j.jhazmat.2016.01.033

    Article  CAS  PubMed  Google Scholar 

  140. Hussain M, Abbas N, Fino D, Russo N (2012) Novel mesoporous silica supported ZnO adsorbents for the desulphurization of biogas at low temperatures. Chem Eng J 188:222–232. https://doi.org/10.1016/j.cej.2012.02.034

    Article  CAS  Google Scholar 

  141. Elyassi B, Al WY, Rajabbeigi N et al (2014) A high-performance adsorbent for hydrogen sulfide removal. Microporous Mesoporous Mater 190:152–155. https://doi.org/10.1016/j.micromeso.2014.02.007

    Article  CAS  Google Scholar 

  142. Sigot L, Ducom G, Germain P (2016) Adsorption of hydrogen sulfide (H2S) on zeolite (Z): retention mechanism. Chem Eng J 287:47–53. https://doi.org/10.1016/j.cej.2015.11.010

    Article  CAS  Google Scholar 

  143. Liu D, Zhou W, Wu J (2016) CeO2–MnOx/ZSM-5 sorbents for H2S removal at high temperature. Chem Eng J 284:862–871. https://doi.org/10.1016/j.cej.2015.09.028

    Article  CAS  Google Scholar 

  144. Xiao J, Wang X, Fujii M et al (2013) A novel approach for ultra-deep adsorptive desulfurization of diesel fuel over TiO2-CeO2/MCM-48 under ambient conditions. AIChE J 59:1441–1445. https://doi.org/10.1002/aic.14085

    Article  CAS  Google Scholar 

  145. Siriwardane IW, Udangawa R, de Silva RM et al (2017) Synthesis and characterization of nano magnesium oxide impregnated granular activated carbon composite for H2S removal applications. Mater Des 136:127–136. https://doi.org/10.1016/j.matdes.2017.09.034

    Article  CAS  Google Scholar 

  146. Wang J, Liang B, Parnas R (2013) Manganese-based regenerable sorbents for high temperature H2S removal. Fuel 107:539–546. https://doi.org/10.1016/j.fuel.2012.10.076

    Article  CAS  Google Scholar 

  147. Bin FH, Zhao JT, Fang YT et al (2013) Selective oxidation of hydrogen sulfide to sulfur over activated carbon-supported metal oxides. Fuel 108:143–148. https://doi.org/10.1016/j.fuel.2011.05.030

    Article  CAS  Google Scholar 

  148. Sisani E, Cinti G, Discepoli G et al (2014) Adsorptive removal of H2S in biogas conditions for high temperature fuel cell systems. Int J Hydrog Energy 39:21753–21766. https://doi.org/10.1016/j.ijhydene.2014.07.173

    Article  CAS  Google Scholar 

  149. Barelli L, Bidini G, de Arespacochaga N et al (2017) Biogas use in high temperature fuel cells: enhancement of KOH-KI activated carbon performance toward H2S removal. Int J Hydrog Energy 42:10341–10353. https://doi.org/10.1016/j.ijhydene.2017.02.021

    Article  CAS  Google Scholar 

  150. Wang J, Wang L, Fan H et al (2017) Highly porous copper oxide sorbent for H2S capture at ambient temperature. Fuel 209:329–338. https://doi.org/10.1016/j.fuel.2017.08.003

    Article  CAS  Google Scholar 

  151. Wu M, Hu C, Feng Y et al (2015) Microwave effects on the structure of CeO2-doped zinc oxide sorbents for H2S removal. Fuel 146:56–59. https://doi.org/10.1016/j.fuel.2014.12.090

    Article  CAS  Google Scholar 

  152. Thanakunpaisit N, Jantarachat N, Onthong U (2017) Removal of hydrogen sulfide from biogas using laterite materials as an adsorbent. Energy Procedia 138:1134–1139. https://doi.org/10.1016/j.egypro.2017.10.215

    Article  CAS  Google Scholar 

  153. de Falco G, Montagnaro F, Balsamo M et al (2018) Synergic effect of Zn and Cu oxides dispersed on activated carbon during reactive adsorption of H2S at room temperature. Microporous Mesoporous Mater 257:135–146. https://doi.org/10.1016/j.micromeso.2017.08.025

    Article  CAS  Google Scholar 

  154. Montes D, Tocuyo E, Gonzaĺez E et al (2013) Reactive H2S chemisorption on mesoporous silica molecular sieve-supported CuO or ZnO. Microporous Mesoporous Mater 168:111–120. https://doi.org/10.1016/j.micromeso.2012.09.018

    Article  CAS  Google Scholar 

  155. Hervy M, Pham Minh D, Gérente C et al (2018) H2S removal from syngas using wastes pyrolysis chars. Chem Eng J 334:2179–2189. https://doi.org/10.1016/j.cej.2017.11.162

    Article  CAS  Google Scholar 

  156. Tóth G, Nemestóthy N, Bélafi-Bakó K et al (2015) Degradation of hydrogen sulfide by immobilized Thiobacillus thioparus in continuous biotrickling reactor fed with synthetic gas mixture. Int Biodeterior Biodegrad 105:185–191. https://doi.org/10.1016/j.ibiod.2015.09.006

    Article  CAS  Google Scholar 

  157. Vikromvarasiri N, Juntranapaporn J, Pisutpaisal N (2017) Performance of Paracoccus pantotrophus for H2S removal in biotrickling filter. Int J Hydrog Energy 42:27820–27825. https://doi.org/10.1016/j.ijhydene.2017.05.232

    Article  CAS  Google Scholar 

  158. Kang JW, Jeong CM, Kim NJ et al (2010) On-site removal of H2S from biogas produced by food waste using an aerobic sludge biofilter for steam reforming processing. Biotechnol Bioprocess Eng 15:505–511. https://doi.org/10.1007/s12257-009-0134-8

    Article  CAS  Google Scholar 

  159. Chmielewski AG, Urbaniak A, Wawryniuk K (2013) Membrane enrichment of biogas from two-stage pilot plant using agricultural waste as a substrate. Biomass Bioenerg 58:219–228. https://doi.org/10.1016/j.biombioe.2013.08.010

    Article  CAS  Google Scholar 

  160. Chatterjee G, Houde AA, Stern SA (1997) Poly(ether urethane) and poly(ether urethane urea) membranes with high H2S/CH4 selectivity. J Membr Sci 135:99–106. https://doi.org/10.1016/S0376-7388(97)00134-8

    Article  CAS  Google Scholar 

  161. Jadhav N, Nirmal Kumar S, Tanvidkar PS, Kuncharam BVR (2020) Synthesis and characterization of mixed-matrix material of Zirconium based metal organic framework (MOF: UiO-66-NH2) and poly(ether-urethane-urea). Mater Today Proc 28:734–738. https://doi.org/10.1016/j.matpr.2019.12.289

    Article  CAS  Google Scholar 

  162. Tilahun E, Sahinkaya E, Çalli B (2018) A hybrid membrane gas absorption and bio-oxidation process for the removal of hydrogen sulfide from biogas. Int Biodeterior Biodegrad 127:69–76. https://doi.org/10.1016/j.ibiod.2017.11.015

    Article  CAS  Google Scholar 

  163. Huang ZH, Liu G, Kang F (2012) Glucose-promoted Zn-based metal-organic framework/graphene oxide composites for hydrogen sulfide removal. ACS Appl Mater Interfaces 4:4942–4947. https://doi.org/10.1021/am3013104

    Article  CAS  PubMed  Google Scholar 

  164. Maghsoudi H, Soltanieh M (2014) Simultaneous separation of H2S and CO2 from CH4 by a high silica CHA-type zeolite membrane. J Membr Sci 470:159–165. https://doi.org/10.1016/j.memsci.2014.07.025

    Article  CAS  Google Scholar 

  165. Makaruk A, Miltner M, Harasek M (2013) Biogas desulfurization and biogas upgrading using a hybrid membrane system ⋯ Modeling study. Water Sci Technol 67:326–332. https://doi.org/10.2166/wst.2012.566

    Article  CAS  PubMed  Google Scholar 

  166. Rongwong W, Boributh S, Assabumrungrat S et al (2012) Simultaneous absorption of CO2 and H2S from biogas by capillary membrane contactor. J Membr Sci 392–393:38–47. https://doi.org/10.1016/j.memsci.2011.11.050

    Article  CAS  Google Scholar 

  167. Li K, Wang D, Koe CC, Teo WK (1998) Use of asymmetric hollow fibre modules for elimination of H2S from gas streams via a membrane absorption method. Chem Eng Sci 53:1111–1119. https://doi.org/10.1016/S0009-2509(97)00343-6

    Article  CAS  Google Scholar 

  168. Tantikhajorngosol P, Laosiripojana N, Jiraratananon R, Assabumrungrat S (2019) Physical absorption of CO2 and H2S from synthetic biogas at elevated pressures using hollow fiber membrane contactors: the effects of Henry’s constants and gas diffusivities. Int J Heat Mass Transf 128:1136–1148. https://doi.org/10.1016/j.ijheatmasstransfer.2018.09.076

    Article  CAS  Google Scholar 

  169. Tippayawong N, Thanompongchart P (2010) Biogas quality upgrade by simultaneous removal of CO2 and H2S in a packed column reactor. Energy 35:4531–4535. https://doi.org/10.1016/j.energy.2010.04.014

    Article  CAS  Google Scholar 

  170. Liu J, Wei Y, Li P et al (2017) Selective H2S/CO2 separation by metal-organic frameworks based on chemical-physical adsorption. J Phys Chem C 121:13249–13255. https://doi.org/10.1021/acs.jpcc.7b04465

    Article  CAS  Google Scholar 

  171. Wang S, Wu D, Huang H et al (2015) Computational exploration of H2S/CH4 mixture separation using acid-functionalized UiO-66 ( Zr ) membrane and composites. CJCHE. https://doi.org/10.1016/j.cjche.2015.04.017

    Article  Google Scholar 

  172. Harasimowicz M, Orluk P, Zakrzewska-Trznadel G, Chmielewski AG (2007) Application of polyimide membranes for biogas purification and enrichment. J Hazard Mater 144:698–702. https://doi.org/10.1016/j.jhazmat.2007.01.098

    Article  CAS  PubMed  Google Scholar 

  173. Sun C, Wen B, Bai B (2015) Application of nanoporous graphene membranes in natural gas processing: molecular simulations of CH4/CO2, CH4/H2S and CH4/N2 separation. Chem Eng Sci 138:616–621. https://doi.org/10.1016/j.ces.2015.08.049

    Article  CAS  Google Scholar 

  174. Poloncarzova M, Vejrazka J, Vesely V, Izak P (2011) Effective purification of biogas by a condensing-liquid membrane. Angew Chem Int Ed 50:669–671

    Article  CAS  Google Scholar 

  175. Iovane P, Nanna F, Ding Y et al (2014) Experimental test with polymeric membrane for the biogas purification from CO2 and H2S. Fuel 135:352–358. https://doi.org/10.1016/j.fuel.2014.06.060

    Article  CAS  Google Scholar 

  176. Iyoha O, Enick R, Killmeyer R et al (2007) H2 production from simulated coal syngas containing H2S in multi-tubular Pd and 80 wt% Pd-20 wt% Cu membrane reactors at 1173 K. J Membr Sci 306:103–115. https://doi.org/10.1016/j.memsci.2007.08.035

    Article  CAS  Google Scholar 

  177. Tilahun E, Bayrakdar A, Sahinkaya E, Çalli B (2017) Performance of polydimethylsiloxane membrane contactor process for selective hydrogen sulfide removal from biogas. Waste Manage 61:250–257. https://doi.org/10.1016/j.wasman.2017.01.011

    Article  CAS  Google Scholar 

  178. Lei G, Liu C, Xie H, Song F (2014) Separation of the hydrogen sulfide and methane mixture by the porous graphene membrane: effect of the charges. Chem Phys Lett 599:127–132. https://doi.org/10.1016/j.cplett.2014.03.040

    Article  CAS  Google Scholar 

  179. Thaeron C, Parrillo DJ, Sircar S et al (1999) Separation of hydrogen sulfide-methane mixtures by selective surface flow membrane. Sep Purif Technol 15:121–129. https://doi.org/10.1016/S1383-5866(98)00089-6

    Article  CAS  Google Scholar 

  180. Quinn R, Appleby JB, Pez GP (2002) Hydrogen sulfide separation from gas streams using salt hydrate chemical absorbents and immobilized liquid membranes. Sep Sci Technol 37:627–638. https://doi.org/10.1081/SS-120001451

    Article  CAS  Google Scholar 

  181. Peters TA, Kaleta T, Stange M, Bredesen R (2012) Hydrogen transport through a selection of thin Pd-alloy membranes: membrane stability, H2S inhibition, and flux recovery in hydrogen and simulated WGS mixtures. Catal Today 193:8–19. https://doi.org/10.1016/j.cattod.2011.12.028

    Article  CAS  Google Scholar 

  182. Gilani N, Towfighi J, Rashidi A et al (2013) Investigation of H2S separation from H2S/CH4 mixtures using functionalized and non-functionalized vertically aligned carbon nanotube membranes. Appl Surf Sci 270:115–123. https://doi.org/10.1016/j.apsusc.2012.12.131

    Article  CAS  Google Scholar 

  183. Washim Uddin M, Hägg MB (2012) Natural gas sweetening-the effect on CO2-CH4 separation after exposing a facilitated transport membrane to hydrogen sulfide and higher hydrocarbons. J Membr Sci 423–424:143–149. https://doi.org/10.1016/j.memsci.2012.08.010

    Article  CAS  Google Scholar 

  184. Mjalli FS, Ahmed OU, Al-Wahaibi T et al (2014) Deep oxidative desulfurization of liquid fuels. Rev Chem Eng 209:98–109. https://doi.org/10.1515/revce-2014-0001

    Article  CAS  Google Scholar 

  185. Ribeiro AM, Grande C, Lopes FVS et al (2008) A parametric study of layered bed PSA for hydrogen purification. Chem Eng Sci 63:5258–5273. https://doi.org/10.1016/j.ces.2008.07.017

    Article  CAS  Google Scholar 

  186. Campos-Martin JM, Capel-Sanchez MC, Perez-Presas P, Fierro JLG (2010) Oxidative processes of desulfurization of liquid fuels. J Chem Technol Biotechnol 85:879–890. https://doi.org/10.1002/jctb.2371

    Article  CAS  Google Scholar 

  187. Fraile JM, Gil C, Mayoral JA et al (2016) Heterogeneous titanium catalysts for oxidation of dibenzothiophene in hydrocarbon solutions with hydrogen peroxide: on the road to oxidative desulfurization. Appl Catal B Environ 180:680–686. https://doi.org/10.1016/j.apcatb.2015.07.018

    Article  CAS  Google Scholar 

  188. Wang Y, Liu X, Kraslawski A et al (2019) A novel process design for CO2 capture and H2S removal from the syngas using ionic liquid. J Clean Prod 213:480–490. https://doi.org/10.1016/j.jclepro.2018.12.180

    Article  CAS  Google Scholar 

  189. Vikrant K, Kailasa SK, Tsang DCW et al (2018) Biofiltration of hydrogen sulfide: trends and challenges. J Clean Prod 187:131–147. https://doi.org/10.1016/j.jclepro.2018.03.188

    Article  CAS  Google Scholar 

  190. Appari S, Janardhanan VM, Bauri R, Jayanti S (2014) Deactivation and regeneration of Ni catalyst during steam reforming of model biogas: an experimental investigation. Int J Hydrog Energy 39:297–304. https://doi.org/10.1016/j.ijhydene.2013.10.056

    Article  CAS  Google Scholar 

  191. Moulijn JA, Van Diepen AE, Kapteijn F (2001) Catalyst deactivation: is it predictable? What to do? Appl Catal A Gen 212:3–16. https://doi.org/10.1016/S0926-860X(00)00842-5

    Article  CAS  Google Scholar 

  192. Lind F, Seemann M, Thunman H (2011) Continuous catalytic tar reforming of biomass derived raw gas with simultaneous catalyst regeneration. Ind Eng Chem Res 50:11553–11562. https://doi.org/10.1021/ie200645s

    Article  CAS  Google Scholar 

  193. Izquierdo U, García-García I, Gutierrez ÁM, Arraibi JR, Barrio VL, Cambra JF, Arias PL (2018) Catalyst deactivation and regeneration processes in biogas tri-reforming process. The effect of hydrogen sulfide addition. Catalysts 8:12. https://doi.org/10.3390/catal8010012

    Article  CAS  Google Scholar 

  194. Bazin P, Saur O, Lavalley JC et al (1997) Influence of platinum on ceria sulfation. Appl Catal B Environ 13:265–274. https://doi.org/10.1016/S0926-3373(97)00004-0

    Article  CAS  Google Scholar 

  195. Arosio F, Colussi S, Groppi G, Trovarelli A (2006) Regeneration of S-poisoned Pd/Al2O3 catalysts for the combustion of methane. Catal Today 117:569–576. https://doi.org/10.1016/j.cattod.2006.06.006

    Article  CAS  Google Scholar 

  196. Vradman L, Herskowitz M, Korin E, Wisniak J (2001) Regeneration of poisoned nickel catalyst by supercritical CO2 extraction. Ind Eng Chem Res 40:1589–1590. https://doi.org/10.1021/ie000805f

    Article  CAS  Google Scholar 

  197. Osada M, Hiyoshi N, Sato O et al (2008) Subcritical water regeneration of supported ruthenium catalyst poisoned by sulfur. Energy Fuels 22:845–849. https://doi.org/10.1021/ef7005194

    Article  CAS  Google Scholar 

  198. Lee DH, Song YH, Kim KT et al (2019) Current state and perspectives of plasma applications for catalyst regeneration. Catal Today 337:15–27. https://doi.org/10.1016/j.cattod.2019.04.071

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Srinivas Appari or Bhanu Vardhan Reddy Kuncharam.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nirmal Kumar, S., Appari, S. & Kuncharam, B.V.R. Techniques for Overcoming Sulfur Poisoning of Catalyst Employed in Hydrocarbon Reforming. Catal Surv Asia 25, 362–388 (2021). https://doi.org/10.1007/s10563-021-09340-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10563-021-09340-w

Keywords

Navigation