Skip to main content

Recent Advances in Hydrotreating/Hydrodesulfurization Catalysts: Part II—Catalyst Additives, Preparation Methods, Activation, Deactivation, and Regeneration

  • Chapter
  • First Online:
Catalysis for Clean Energy and Environmental Sustainability

Abstract

Additives play a key role in enhancing the activity of hydrotreating catalysts by means of influencing metal–support interactions, improving dispersion of active metals on the support, enhancing the sulfidation degree, increasing stacking of metal sulfide slabs on the support, etc. Additives are also reported to enhance the stability of the catalysts apart from modifying their activity. Another aspect of hydrotreating catalyst manufacture is the method of preparation of these catalysts, which will influence the metal dispersion, support interactions, and ultimately the performance. The present chapter (Part II) reviews the recent advances in hydrotreating/hydesulfurization catalysts in terms of additives/modifiers and various preparation methods. Other aspects of catalysts such as activation, deactivation, and regeneration are also being discussed upon. Apart from this, catalyst requirements for different hydrotreating feedstocks have also been covered, considering the importance of feedstock type and characteristics on the selection of suitable catalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Scherzer J, Gruia AJ (1996) Hydrocracking science and technology. Marcel Dekker, Inc., New York, NY, p 44

    Book  Google Scholar 

  2. Stanislaus A, Marafi A, Rana MS (2010) Recent advances in the science and technology of ultra low sulfur diesel (ULSD) production. Catal Today 153:1–68

    Article  CAS  Google Scholar 

  3. Topsoe H, Clausen BS, Massoth FE (1996) In: Anderson JR, Boudart M (eds) Hydrotreating catalysis – science and technology, vol 11. Berlin, Springer

    Google Scholar 

  4. Tong-na ZHOU, Hai-liang YIN, Shu-na HAN, Yong-ming CHAI, Yun-qi LIU, Chen-guang LIU (2009) Influences of different phosphorus contents on NiMoP/Al2O3 hydrotreating catalysts. J Fuel Chem Technol 37(3):330–334

    Article  Google Scholar 

  5. Sun M, Nicosia D, Prins R (2003) The effect of fluorine, phosphate and chelating agents on hydrotreating catalysts and catalysis. Catal Today 86:173–189

    Article  CAS  Google Scholar 

  6. Ding L, Zhang Z, Zheng Y, Ring Z, Chen J (2006) Effect of fluorine and boron modification on the HDS, HDN and HDA activity of hydrotreating catalysts. Appl Catal A Gen 301:241–250

    Article  CAS  Google Scholar 

  7. Saih Y, Segawa K (2009) Catalytic activity of CoMo catalysts supported on boron-modified alumina for the hydrodesulfurization of dibenzothiophene and 4,6-dimethyldibenzothiophene. Appl Catal A Gen 353:258–265

    Article  CAS  Google Scholar 

  8. DeCanio EC, Weissman JG (1995) FT-IR analysis of borate- promoted Ni-Mo/Al2O3 hydrotreating catalysts. Colloids Surf A Physicochem Eng Asp 105:123–132

    Article  CAS  Google Scholar 

  9. van Haandel L, Bremmer GM, Hensen EJM, Weber T (2017) The effect of organic additives and phosphoric acid on sulfidation and activity of (co) Mo/Al2O3 hydrodesulfurization catalysts. J Catal 351:95–106

    Article  CAS  Google Scholar 

  10. Zepeda TA, Infantes-Molina A, Díaz de León JN, Fuentes S, Alonso-Núñez G, Torres-Otañez G, Pawelec B (2014) Hydrodesulfurization enhancement of heavy and light S-hydrocarbons on NiMo/HMS catalysts modified with Al and P. Appl Catal A Gen 484:108–121

    Article  CAS  Google Scholar 

  11. Zhou W, Zhang Q, Zhou Y, Wei Q, Lin D, Ding S, Jiang S, Zhang Y (2018) Effects of Ga- and P-modified USY-based NiMoS catalysts on ultra-deep hydrodesulfurization for FCC diesels. Catal Today 305:171–181

    Article  CAS  Google Scholar 

  12. Rashidi F, Sasaki T, Rashidi AM, Kharat AN, Jozani KJ (2013) Ultradeep hydrodesulfurization of diesel fuels using highly efficient nanoalumina-supported catalysts: impact of support, phosphorus, and/or boron on the structure and catalytic activity. J Catal 299:321–335

    Article  CAS  Google Scholar 

  13. Nadeina KA, Kazakov MO, Danilova IG, Kovalskaya AA, Stolyarova EA, Dik PP, Gerasimov EY, Prosvirin IP, Chesalov YA, Klimov OV, Noskov АS (2019) The influence of B and P in the impregnating solution on the properties of NiMo/γ-δ-Al2O3 catalysts for VGO hydrotreating. Catal Today 329:2–12

    Article  CAS  Google Scholar 

  14. Li Y, Zhang T, Liu D, Liu B, Lu Y, Chai Y-M, Liu C (2019) Study of the promotion effect of citric acid on the active NiMoS phase in NiMo/Al2O3 catalysts. Ind Eng Chem Res 58(37):17195–17206

    Article  CAS  Google Scholar 

  15. Xia B, Cao L, Luo K, Liang Z, Wang X, Gao J, Xu C (2019) Effects of the active phase of CoMo/γ-Al2O3 catalysts modified using cerium and phosphorus on the HDS performance for FCC gasoline. Energy Fuel 33(5):4462–4473

    Article  CAS  Google Scholar 

  16. Saleh TA, AL-Hammadi SA, Al-Amer AM (2019) Effect of boron on the efficiency of MoCo catalysts supported on alumina for the hydrodesulfurization of liquid fuels. Process Saf Environ Prot 121:165–174

    Article  CAS  Google Scholar 

  17. Arturo Mendoza-Nieto J, Robles-Mendez F, Klimova TE (2015) Support effect on the catalytic performance of trimetallic NiMoW catalysts prepared with citric acid in HDS of dibenzothiophenes. Catal Today 250:47–59

    Article  CAS  Google Scholar 

  18. Vatutina YV, Klimov OV, Stolyarova EA, Nadeina КA, Danilova IG, Chesalov YA, Gerasimov EY, Prosvirin IP, Noskov AS (2019) Influence of the phosphorus addition ways on properties of CoMo-catalysts of hydrotreating. Catal Today 329:13–23

    Article  CAS  Google Scholar 

  19. Fan Y, Xiao H, Shi G, Liu H, Bao X (2011) A novel approach for modulating the morphology of supported metal nanoparticles in hydrodesulfurization catalysts. Energy Environ Sci 4:572

    Article  CAS  Google Scholar 

  20. Kubota T, Hosomi N, Bando KK, Matsui T, Okamoto Y (2003) In situ fluorescence XAFS study for hydrodesulfurization catalysts. Phys Chem Chem Phys 5:4510–1515

    Article  CAS  Google Scholar 

  21. Okamoto Y, Ishihara S, Kawano M, Satoh M, Kubota T (2003) Preparation of co-Mo/Al2O3 model sulfide catalysts for hydrodesulfurization and their application to the study of the effects of catalyst preparation. J Catal 217:12–22

    CAS  Google Scholar 

  22. Reinhoudt HR, Troost R, van Langeveld AD, van Veen JAR, Sie ST, Moulijn JA (2001) The nature of the active phase in sulfided NiW/γ-Al2O3 in relation to its catalytic performance in hydrodesulfurization reactions. J Catal 203:509–515

    Article  CAS  Google Scholar 

  23. Chen W, Long X, Li M, Nie H, Li D (2017) Influence of active phase structure of CoMo/Al2O3 catalyst on the selectivity of hydrodesulfurization and hydrodearomatization. Catal Today 292:97–109

    Article  CAS  Google Scholar 

  24. Zhang H, Lin H, Zheng Y, Hu Y, MacLenna A (2015) Understanding of the effect of synthesis temperature on the crystallization and activity of nano-MoS2 catalyst. Appl Catal B Environ 165:537–546

    Article  CAS  Google Scholar 

  25. Okamoto Y (2008) A novel preparation-characterization technique of hydrodesulfurization catalysts for cleaner fuels. Catal Today 132:9–17

    Article  CAS  Google Scholar 

  26. Kubota T, Rinaldi N, Okumura K, Honma T, Hirayama S, Okamoto Y (2010) In situ XAFS study of the sulfidation of Co-Mo/B2O3/Al2O3 hydrodesulfurization catalysts prepared by using citric acid as a chelating agent. Appl Catal A Gen 373:214–221

    Article  CAS  Google Scholar 

  27. Liu H, Yin C, Li X, Chai Y, Li Y, Liu C (2017) Effect of NiMo phases on the hydrodesulfurization activities of dibenzothiophene. Catal Today 282:222–229

    Article  CAS  Google Scholar 

  28. Liu B, Liu L, Wang Z, Chai Y, Liu H, Yin C, Liu C (2017) Effect of hydrogen spillover in selective hydrodesulfurization of FCC gasoline over the CoMo catalyst. Catal Today 282:214–221

    Article  CAS  Google Scholar 

  29. Wang X-l, Zhao Z, Chen Z-t, Li J-m, Duan A-j, Xu C-m, Gao D-w, Cao Z-k, Zheng P, Fan J-y (2017) Effect of synthesis temperature on structure-activity-relationship over NiMo/γ-Al2O3 catalysts for the hydrodesulfurization of DBT and 4,6-DMDBT. Fuel Process Technol 161:52–61

    Article  CAS  Google Scholar 

  30. Wang X, Zhao Z, Zheng P, Chen Z, Duan A, Xu C, Jiao J, Zhang H, Cao Z, Ge B (2016) Synthesis of NiMo catalysts supported on mesoporous Al2O3 with different crystal forms and superior catalytic performance for the hydrodesulfurization of dibenzothiophene and 4,6-dimethyldibenzothiophene. J Catal 344:680–691

    Article  CAS  Google Scholar 

  31. Braggio FA, de Mello MD, Magalhaes BC, Zotin JL, Silva MAP (2019) Effects of citric acid addition method on the activity of NiMo/γ-Al2O3 catalysts in simultaneous hydrodesulfurization and hydrodenitrogenation reactions. Energy Fuel 33:1450–1457

    Article  CAS  Google Scholar 

  32. Singh R, Kunzru D, Sivakumar S (2016) Monodispersed ultrasmall NiMo metal oxide nanoclusters as hydrodesulfurization catalyst. Appl Catal B Environ 185:163–173

    Article  CAS  Google Scholar 

  33. Liu H, Li Y, Yin C, Wu Y, Chai Y, Dong D, Li X, Liu C (2016) One-pot synthesis of ordered mesoporous NiMo-Al2O3 catalysts for dibenzothiophene hydrodesulfurization. Appl Catal B Environ 198:493–507

    Article  CAS  Google Scholar 

  34. Dong Y, Yu X, Zhou Y, Xu Y, Lian X, Yi X, Fang W (2018) Towards active macro–mesoporous hydrotreating catalysts: synthesis and assembly of mesoporous alumina microspheres. Cat Sci Technol 8:1892

    Article  CAS  Google Scholar 

  35. Cheche UA, Alhooshani KR, Adamu S, Thagfi JA, Saleh TA (2019) The effect of calcination temperature on the activity of hydrodesulphurization catalysts supported on mesoporous activated carbon. J Clean Prod 211:1567–1575

    Article  CAS  Google Scholar 

  36. Xu J, Huang T, Yu F (2017) Highly efficient NiMo/SiO2-Al2O3 hydrodesulfurization catalyst prepared from gemini surfactant-dispersed Mo precursor. Appl Catal B Environ 203:839–850

    Article  CAS  Google Scholar 

  37. Huang T, He S, Chang J, Xu J, Yu F (2019) Preparation of a superior Co4Mo12/Al2O3 hydrodesulfurization catalyst by the hydrothermal deposition of heteropoly compounds on Al2O3. Catal Commun 122:68–72

    Article  CAS  Google Scholar 

  38. Cabello CI, Cabrerizo FM, Alvarez A, Thomas HJ (2002) Decamolybdodicobaltate(III) heteropolyanion: structural, spectroscopical, thermal and hydrotreating catalytic properties. J Mol Catal A Chem 186:89–100

    Article  CAS  Google Scholar 

  39. Hensen EJM, Kooyman PJ, van der Meer Y, van der Kraan AM, de Beer VHJ, van Veen JAR, van Santen RA (2001) The relation between morphology and hydrotreating activity for supported MoS2 particles. J Catal 199:224–235

    Article  CAS  Google Scholar 

  40. Bhan OK (2006) High activity hydrodesulfurization catalyst, a method of making a high activity hydrodesulfurization catalyst, and a process for manufacturing an ultra-low sulfur distillate product, US Patent No. 20060060510A1

    Google Scholar 

  41. Wu J, Ellis ES, Sokolovskii V, Lowe DM, Volpe Jr. AF (2015) Selective catalysts having high temperature alumina supports for naphtha hydrodesulfurization, US Patent No.: US 9,175,232 B2

    Google Scholar 

  42. Soled SL, Miseo S, Baumgartner JE, Nistor I, Nandi P, Guzman J, Levin D, Wilson S, Bergweff JA, Huiberts RJ, Van Loevezijn A (2018) Hydroprocessing catalysts and their production, Patent No. US 10,022,712 B2

    Google Scholar 

  43. Roberts CD (2008) Improve sulfiding of hydroprocessing catalysts. Hydrocarb Process 2008:133–135

    Google Scholar 

  44. van Haandel L, Bremmer GM, Hensen EJM, Weber T (2016) Influence of sulfiding agent and pressure on structure and performance of CoMo/Al2O3 hydrodesulfurization catalysts. J Catal 342:27–39

    Article  CAS  Google Scholar 

  45. Liu B, Liu L, Chai Y, Zhao J, Li Y, Liu D, Liu Y, Liu C (2018) Effect of sulfiding conditions on the hydrodesulfurization performance of the ex-situ presulfided CoMoS/γ-Al2O3 catalysts. Fuel 234:1144–1153

    Article  CAS  Google Scholar 

  46. Furimsky E, Massoth FE (1999) Deactivation of hydroprocessing catalysts. Catal Today 52(4):381–495

    Article  CAS  Google Scholar 

  47. Zhang H, Lin H, Zheng Y (2019) Deactivation mechanism study of unsupported nano MoS2 catalyst. Carbon Resour Convers:3, 60. https://doi.org/10.1016/j.crcon.2019.09.003

  48. Zhang C, Liu X, Liu T, Jiang Z, Li C (2019) Optimizing both the CoMo/Al2O3 catalyst and the technology for selectivity enhancement in the hydrodesulfurization of FCC gasoline. Appl Catal A Gen 575:187–197

    Article  CAS  Google Scholar 

  49. Marafi M, Al-Omani S, Al-Sheeha H, Stanislaus A (2007) Utilization of metal-fouled spent residue hydroprocessing catalyst in the preparation of an active HDM catalyst. Ind Eng Chem Res 46:1968–1974

    Article  CAS  Google Scholar 

  50. Kallinikos LE, Bellos GD, Papayannakos NG (2008) Study of the catalyst deactivation in an industrial gasoil HDS reactor using a mini-scale laboratory reactor. Fuel 87:2444–2449

    Article  CAS  Google Scholar 

  51. Pimerzin A, Roganov A, Mozhaev A, Maslakov K, Nikulshin P, Pimerzin A (2018) Active phase transformation in industrial CoMo/Al2O3 hydrotreating catalyst during its deactivation and rejuvenation with organic chemicals treatment. Fuel Process Technol 173:56–65

    Article  CAS  Google Scholar 

  52. Bui N-Q, Geantet C, Berhault G (2015) Maleic acid, an efficient additive for the activation of regenerated CoMo/Al2O3 hydrotreating catalysts. J Catal 330:374–386

    Article  CAS  Google Scholar 

  53. Santolalla-Vargas CE, Santes V, Sanchez-Minero F, Issis R-I, Goiz O, Lartundo-Rojas L, Diaz L, Luna-Ramirez R, Vald’es OU, de los Reyes JA, G’omez E (2019) In situ reactivation of spent NiMoP/γ-Al2O3 catalyst for hydrodesulfurization of straight-run gas oil. Catal Today 329:44–52

    Article  CAS  Google Scholar 

  54. Iwamoto R (2013) Regeneration of residue hydrodesulfurization catalyst. J Jpn Petrol Inst 56(3):109–121

    Article  CAS  Google Scholar 

  55. Klimov OV, Nadeina KA, Dik PP, Koryakina GI, Pereyma VY, Kazakov MO, Budukva SV, Gerasimov EY, Prosvirin IP, Kochubey DI, Noskov AS (2016) CoNiMo/Al2O3 catalysts for deep hydrotreatment of vacuum gasoil. Catal Today 271:56–63

    Article  CAS  Google Scholar 

  56. Guo R, Cao Z, Fang X (2018) The development of catalysts and their stacking technology for diesel ultra-deep hydrosulfurization. Catal Today 316:21–25

    Article  CAS  Google Scholar 

  57. Sharifi K, Halladj R, Royaee SJ, Nasr MRJ (2018) Synthesis of W/HZSM-5 catalyst for simultaneous octane enhancement desulfurization process of gasoline production. Powder Technol 338:638–644

    Article  CAS  Google Scholar 

  58. Sharifi K, Halladj R, Royaee SJ, Nasr MRJ (2018) A new approach for gasoline upgrading: coupling octane enhancement and desulfurization of heavy straight-run naphtha over Ni/HZSM-5 catalyst. Catal Commun 115:31–35

    Article  CAS  Google Scholar 

  59. Bin L, Lei L, Yong-ming C, Jin-chong Z, Chen-guang L (2018) Essential role of promoter co on the MoS2 catalyst in selective hydrodesulfurization of FCC gasoline. J Fuel Chem Technol 46(4):441–450

    Article  Google Scholar 

  60. Li P, Liu X, Zhang C, Chen Y, Huang B, Liu T, Jiang Z, Li C (2016) Selective hydrodesulfurization of gasoline on co/MoS2 ± x catalyst: effect of sulfur defects in MoS2 ± x. Appl Catal A Gen 524:66–76

    Article  CAS  Google Scholar 

  61. Xu K, Li Y, Xu X, Zhou C, Liu Z, Yang F, Zhang L, Wang G, Gao J, Xu C (2015) Single-walled carbon nanotubes supported Ni–Y as catalyst for ultra-deep hydrodesulfurization of gasoline and diesel. Fuel 160:291–296

    Article  CAS  Google Scholar 

  62. Wang T, Li J, Yi S, Wang C, Gao Y, Chou L, Yao W (2015) The tuning of pore structures and acidity for Zn/Al layered double hydroxides: the application on selective hydrodesulfurization for FCC gasoline. J Energy Chem 24:432–440

    Article  Google Scholar 

  63. Le Page JF, Chatila SG, Davidson M (1992) Resid and heavy oil processing. Editions Technip, Paris

    Google Scholar 

  64. Ferreira C, Tayakout-Fayolle M, Guibard I, Lemos F, Toulhoat H, Ramôa Ribeiro F (2012) Hydrodesulfurization and hydrodemetallization of different origin vacuum residues: characterization and reactivity. Fuel 98:218–228

    Article  CAS  Google Scholar 

  65. Ancheyta J, Rana MS, Furimsky E (2005) Hydroprocessing of heavy petroleum feeds: tutorial. Catal Today 109 (1–4:3–15

    Article  CAS  Google Scholar 

  66. Takahashi T, Higashi H, Kai T (2005) Development of a new hydrodemetallization catalyst for deep desulfurization of atmospheric residue and the effect of reaction temperature on catalyst deactivation. Catal Today 104(1):76–85

    Article  CAS  Google Scholar 

  67. Stanislaus A, Al-Dolama K, Absi-Halabi M (2002) Preparation of a large pore alumina-based HDM catalyst by hydrothermal treatment and studies on pore enlargement mechanism. J Mol Catal A Chem 181:33–39

    Article  CAS  Google Scholar 

  68. Kressmann S, Morel F, Harle V, Kasztelan S (1998) Recent developments in fixed-bed catalytic residue upgrading. Catal Today 43:203–215

    Article  CAS  Google Scholar 

  69. Rana MS, Sámano V, Jorge A, Diaz JAI (2007) A review of recent advances on process technologies for upgrading of heavy oils and residua. Fuel 86:1216–1231

    Article  CAS  Google Scholar 

  70. Díaz de León JN, Zavala-Sánchez LA, Suárez-Toriello VA, Alonso-Núñez G, Zepeda TA, Yocupicio RI, de los Reyes JA, Fuentes S (2017) Support effects of NiW catalysts for highly selective sulfur removal from light hydrocarbons. Appl Catal B Environ 213:167–176

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the management of Hindustan Petroleum Corporation Limited, Green R&D Center, Bengaluru, for allowing them to publish this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Valavarasu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Valavarasu, G., Ramachandrarao, B. (2021). Recent Advances in Hydrotreating/Hydrodesulfurization Catalysts: Part II—Catalyst Additives, Preparation Methods, Activation, Deactivation, and Regeneration. In: Pant, K.K., Gupta, S.K., Ahmad, E. (eds) Catalysis for Clean Energy and Environmental Sustainability. Springer, Cham. https://doi.org/10.1007/978-3-030-65021-6_2

Download citation

Publish with us

Policies and ethics