Skip to main content
Log in

Strategy on Effective Synthesis of SSZ-13 Zeolite Aiming at Outstanding Performances for NH3-SCR Process

  • Original Article
  • Published:
Catalysis Surveys from Asia Aims and scope Submit manuscript

Abstract

SSZ-13 zeolite was synthesized using four templates, and the synthesis conditions with choline chloride (CC) as template were optimized by dynamic stirring, fluoride-assisted and seed-assisted synthesis. Because the geometric dimensions of CC dimer (7.21 × 10.72 Å) and CHA cage (7.3 × 12 Å) matched closely, the crystallinity and specific surface area of sample synthesized using CC were higher than those of other samples (except for that of the sample synthesized using TMAdaOH). By adopting three improved methods, SSZ-13 samples with better crystallinity, higher specific surface area and more regular morphology could be synthesized in a shorter time (3–4 days). The sample prepared using fluoride-assisted method could achieve a similar crystallinity to the sample synthesized using TMAdaOH. The corresponding catalyst exhibited the best catalytic performance in the NH3-SCR reaction, with 100% NO conversion from 150 to 550 °C. This performance was attributed to fluoride ions promoting the formation of CC dimers through charge attraction of SiF62−. Furthermore, by synthesis optimization, the more developed pore structure, stronger NH3 adsorption capacity and lower CuO content of Cu-SSZ-13 were also important factors for the improved catalytic performance.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Yu QQ, Wang H, Liu T et al (2012) High-efficiency removal of NOx using a combined adsorption-discharge plasma catalytic process. Environ Sci Technol 46:2337–2344

    Article  CAS  PubMed  Google Scholar 

  2. Zhao B, Wang SX, Liu H et al (2013) NOx emissions in China: historical trends and future perspectives. Atmos Chem Phys 13:9869–9897

    Article  CAS  Google Scholar 

  3. Fan C, Chen Z, Pang L et al (2018) The influence of Si/Al ratio on the catalytic property and hydrothermal stability of Cu-SSZ-13 catalysts for NH3-SCR. Appl Catal A 550:256–265

    Article  CAS  Google Scholar 

  4. Kobayashi M, Kuma R, Morita A (2006) Low temperature selective catalytic reduction of NO by NH3 over V2O5 supported on TiO2-SiO2-MoO3. Catal Lett 112:37–44

    Article  CAS  Google Scholar 

  5. Shan YL, Shi XY, Du JP et al (2019) Cu-exchanged RTH-type zeolites for NH3-selective catalytic reduction of NOx: Cu distribution and hydrothermal stability. Catal Sci Technol 9:106–115

    Article  CAS  Google Scholar 

  6. Zha KW, Kang L, Feng C et al (2018) Improved NOx reduction in the presence of alkali metals by using hollandite Mn-Ti oxide promoted Cu-SAPO-34 catalysts. Environ Sci Nano 5:1408–1419

    Article  CAS  Google Scholar 

  7. Wang JH, Zhao HW, Haller G et al (2017) Recent advances in the selective catalytic reduction of NOx with NH3 on Cu-Chabazite catalysts. Appl Catal B 202:346–354

    Article  CAS  Google Scholar 

  8. Fickel DW, D’Addio E, Lauterbach JA, Lobo RF (2011) The ammonia selective catalytic reduction activity of copper-exchanged small-pore zeolites. Appl Catal B 102:441–448

    Article  CAS  Google Scholar 

  9. Gao F, Hun J, Janos S, Peden CHF (2013) Current understanding of Cu-exchanged chazbazite molecular sieves for use as commercial diesel engine DeNOx Catalysts. Top Catal 56:1441–1459

    Article  CAS  Google Scholar 

  10. Mu YY, Zhang Y, Fan JY, Guo CL (2017) Effect of ultrasound pretreatment on the hydrothermal synthesis of SSZ-13 zeolite. Ultrason Sonochem 38:430–436

    Article  CAS  PubMed  Google Scholar 

  11. Beale AM, Gao F, Lezcano-gonzalez I et al (2015) Recent advances in automotive catalysis for NOx emission control by small-pore microporous materials. Chem Soc Rev 44:7371–7405

    Article  CAS  PubMed  Google Scholar 

  12. Deka U, Eilertsen EA, Emerich H et al (2012) Confirmation of isolated Cu2+ ions in SSZ-13 zeolite as active sites in NH3-selective catalytic reduction. J Phys Chem C 116:4809–4818

    Article  CAS  Google Scholar 

  13. Korhonen ST, Fickel DW, Lobo RF et al (2011) Isolated Cu2+ ions: active sites for selective catalytic reduction of NO. Chem Commun 47:800–802

    Article  CAS  Google Scholar 

  14. Kwak JH, Tonkyn RG, Kim DH et al (2010) Excellent activity and selectivity of Cu-SSZ-13 in the selective catalytic reduction of NOx with NH3. J Catal 275:187–190

    Article  CAS  Google Scholar 

  15. Chen HY, Wei ZH, Kollar M et al (2015) A comparative study of N2O formation during the selective catalytic reduction of NOx with NH3 on zeolite supported Cu catalysts. J Catal 329:490–498

    Article  CAS  Google Scholar 

  16. Gómez-García MA, Pitchon V et al (2005) Pollution by nitrogen oxides : an approach to NOx abatement by using sorbing catalytic materials. Environ Int 31:445–467

    Article  PubMed  CAS  Google Scholar 

  17. Zones SI (1990) Direct hydrothermal conversion of cubic P zeolite to organozeolite SSZ-13. J Chem Soc Faraday Trans 86:3467–3472

    Article  CAS  Google Scholar 

  18. Eilertsen EA, Arstad B, Svelle S et al (2012) Single parameter synthesis of high silica CHA zeolites from fluoride media. Microporous Mesoporous Mater 153:94–99

    Article  CAS  Google Scholar 

  19. Zhao ZC, Yu R, Zhao RR et al (2017) Cu-exchanged Al-rich SSZ-13 zeolite from organotemplate-free synthesis as NH3-SCR catalyst: effects of Na+ ions on the activity and hydrothermal stability. Appl Catal B 217:421–428

    Article  CAS  Google Scholar 

  20. Ren LM, Zhang YB, Zeng SJ et al (2012) Design and synthesis of a catalytically active Cu-SSZ-13 zeolite from a copper-amine complex template. Chin J Catal 33:92–105

    Article  CAS  Google Scholar 

  21. Ren LM, Zhu LF, Yang CG et al (2011) Designed copper-amine complex as an efficient template for one-pot synthesis of Cu-SSZ-13 zeolite with excellent activity for selective catalytic reduction of NOx by NH3. Chem Commun 47:9789–9791

    Article  CAS  Google Scholar 

  22. Xie LJ, Liu FD, Ren LM et al (2014) Excellent performance of one-pot synthesized Cu-SSZ-13 catalyst for the selective catalytic reduction of NOx with NH3. Environ Sci Technol 48:566–572

    Article  CAS  PubMed  Google Scholar 

  23. Xie LJ, Liu FD, Shi XY et al (2015) Effects of post-treatment method and Na co-cation on the hydrothermal stability of Cu-SSZ-13 catalyst for the selective catalytic reduction of NOx with NH3. Appl Catal B 179:206–212

    Article  CAS  Google Scholar 

  24. Shibata S, Itakura M, Ide Y et al (2011) FAU-LEV interzeolite conversion in fluoride media. Microporous Mesoporous Mater 138:32–39

    Article  CAS  Google Scholar 

  25. Shayib RM, George NC, Seshadri R et al (2011) Structure-directing roles and interactions of fluoride and organocations with siliceous zeolite frameworks. J Am Chem Soc 133:18728–18741

    Article  CAS  PubMed  Google Scholar 

  26. Wang JC, Liu ZQ, Feng G et al (2013) In situ synthesis of CuSAPO-34/cordierite and its selective catalytic reduction of nitrogen oxides in vehicle exhaust: the effect of HF. Fuel 109:101–109

    Article  CAS  Google Scholar 

  27. Shan YL, Shi XY, Du JP et al (2019) SSZ-13 Synthesized by solvent-free method: a potential candidate for NH3-SCRcatalyst with high activity and hydrothermal stability. Ind Eng Chem Res 58:5397–5403

    Article  CAS  Google Scholar 

  28. Nada MH, Larsen SC (2017) Insight into seed-assisted template free synthesis of ZSM-5 zeolites. Microporous Mesoporous Mater 239:444–452

    Article  CAS  Google Scholar 

  29. Wang L, Shao Y, Zhang J, Anpo M (2006) Synthesis of MCM-48 mesoporous molecular sieve with thermal and hydrothermal stability with the aid of promoter anions. Microporous Mesoporobus Mater 95:17–25

    Article  CAS  Google Scholar 

  30. Chen GR, Sun QM, Yu JH (2017) Nanoseed-assisted synthesis of nano-sized SAPO-34 zeolites using morpholine as the sole template with superior MTO performance. Chem Commun 53:13328–13331

    Article  CAS  Google Scholar 

  31. Perez-Pariente J, Martens JA, Jacobs PA (1988) Factors affecting the synthesis efficiency of zeolite BETA from aluminosilicate gels containing alkali and tetraethylammonium ions. Zeolites 8:46–53

    Article  CAS  Google Scholar 

  32. Caullet P, Delmotte L, Faust AC, Guth JL (1995) Synthesis of zeolite Beta from nonalkaline fluoride aqueous aluminosilicate gels. Zeolites 15:139–147

    Article  CAS  Google Scholar 

  33. Wang YH, Chen JY, Lei XR et al (2018) Preparation of high silica microporous zeolite SSZ-13 using solid waste silica fume as silica source. Adv Powder Technol 29:1112–1118

    Article  CAS  Google Scholar 

  34. Sun Y, Yang Q, Zhang Y et al (2019) Synthesis, characterization and catalytic application of ZnPO molecular sieve in wastewater system. J Clean Prod 213:1165–1171

    Article  CAS  Google Scholar 

  35. Han LN, Zhao XG, Yu HF et al (2018) Preparation of SSZ-13 zeolites and their NH3-selective catalytic reduction activity. Microporous Mesoporous Mater 261:126–136

    Article  CAS  Google Scholar 

  36. Kerr GT (1969) Preparation and properties of ultrastable hydrogen zeolite Y. J Phys Chem 2594:2780–2782

    Article  Google Scholar 

  37. Hincapie BO, Garces LJ, Zhang Q et al (2004) Synthesis of mordenite nanocrystals. Microporous Mesoporous Mater 67:19–26

    Article  CAS  Google Scholar 

  38. Tsokanis EA (1992) Further investigations of nucleation by initial breeding in the AI-free NH4-ZSM-5 system. Zeolites 12:369–373

    Article  CAS  Google Scholar 

  39. Wu QM, Meng XJ, Gao XH, Xiao FS (2018) Solvent-free synthesis of zeolites : mechanism and utility. Acc Chem Res 51:1396–1403

    Article  CAS  PubMed  Google Scholar 

  40. Gao F, Walter ED, Karp EM et al (2013) Structure-activity relationships in NH3-SCR over Cu-SSZ-13 as probed by reaction kinetics and EPR studies. J Catal 300:20–29

    Article  CAS  Google Scholar 

  41. Niu C, Shi XY, Liu FD et al (2016) High hydrothermal stability of Cu-SAPO-34 catalysts for the NH3-SCR of NOx. Chem Eng J 294:254–263

    Article  CAS  Google Scholar 

  42. Han S, Ye Q, Cheng SY et al (2017) Effect of the hydrothermal aging temperature and Cu/Al ratio on the hydrothermal stability of CuSSZ-13 catalysts for NH3-SCR. Catal Sci Technol 7:703–717

    Article  CAS  Google Scholar 

  43. Wang J, Yu T, Wang XQ et al (2012) The influence of silicon on the catalytic properties of Cu/SAPO-34 for NOx reduction by ammonia-SCR. Appl Catal B 127:137–147

    Article  CAS  Google Scholar 

  44. Liu N, Zhang RD, Li YX, Chen BH (2014) Local electric field effect of TMI (Fe Co, Cu)-BEA on N2O direct dissociation. J Phys Chem C 118:10944–10956

    Article  CAS  Google Scholar 

  45. Chen BH, Xu RN, Zhang RD, Liu N (2014) Economical way to synthesize SSZ-13 with abundant ion-exchanged Cu+ for an extraordinary performance in selective catalytic reduction (SCR) of NOx by ammonia. Environ Sci Technol 48:13909–13916

    Article  CAS  PubMed  Google Scholar 

  46. Wang JC, Peng ZL, Chen Y et al (2015) In-situ hydrothermal synthesis of Cu-SSZ-13/cordierite for the catalytic removal of NOx from diesel vehicles by NH3. Chem Eng J 263:9–19

    Article  CAS  Google Scholar 

  47. Zhang RD, Teoh WY, Amal R et al (2010) Catalytic reduction of NO by CO over Cu/CexZr1-xO2 prepared by flame synthesis. J Catal 272:210–219

    Article  CAS  Google Scholar 

  48. Wang D, Jangjou Y, Liu Y et al (2015) A comparison of hydrothermal aging effects on NH3-SCR of NOx over Cu-SSZ-13 and Cu-SAPO-34 catalysts. Appl Catal B 165:438–445

    Article  CAS  Google Scholar 

  49. Zhu HY, Kwak JH, Peden CHF, Szanyi J (2013) In situ DRIFTS-MS studies on the oxidation of adsorbed NH3 by NOx over a Cu-SSZ-13 zeolite. Catal Today 205:16–23

    Article  CAS  Google Scholar 

  50. Zhang T, Qiu F, Chang HZ et al (2016) Identification of active sites and reaction mechanism on low-temperature SCR activity over Cu-SSZ-13 catalysts prepared by different methods. Catal Sci Technol 6:6294–6304

    Article  CAS  Google Scholar 

  51. Lomachenko KA, Borfecchia E, Negri C et al (2016) The Cu-CHA deNOx catalyst in action: temperature-dependent NH3-assisted selective catalytic reduction monitored by operando XAS and XES. J Am Chem Soc 138:12025–12028

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. U1862102, 21976012) and Fundamental Research Funds for the Central Universities (Grant Nos. XK1802-1, JD1903).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Runduo Zhang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Zhang, R., Wang, H. et al. Strategy on Effective Synthesis of SSZ-13 Zeolite Aiming at Outstanding Performances for NH3-SCR Process. Catal Surv Asia 24, 143–155 (2020). https://doi.org/10.1007/s10563-020-09300-w

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10563-020-09300-w

Keywords

Navigation