Skip to main content
Log in

Temperature-Responsive Polyoxometalate Catalysts for DBT Desulfurization in One-Pot Oxidation Combined with Extraction

  • Published:
Catalysis Surveys from Asia Aims and scope Submit manuscript

Abstract

Intelligent thermo-responsive catalysts [C16H33N(CH3)3]3[PO4{MO(O2)2}4]/poly(N-isopropylacrylamide) (M = Mo and W, abbreviated as C16PM(O2)2/PNIPAM) have been prepared using thermo-responsive polymer PNIPAM as a support. The thermo-responsive hybrids exhibit novel switchable property based on the change of temperature, while its solubility in organic solvent is reversibly controllable through an external temperature stimulus linking the gap between heterogeneous catalysis and homogeneous one. Moreover, non-polar organic substrates are accumulated around the catalytic sites by two synergistic effects of amphiphilic POM molecules and the existence of PNIPAM. Therefore, this solid hybrid has been successfully used in catalyzing the oxidation of refractory sulfur-containing compound dibenzothiophene into its corresponding sulfone with high selectivity in the presence of H2O2. Application of this catalyst brings about an efficient, useful and green process in desulfurization through extraction and oxidation simultaneously.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 1
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Behr A, Henze G, Schomäcker R (2006) Thermoregulated liquid/liquid catalyst separation and recycling. Adv Synth Catal 348:1485–1495

    Article  CAS  Google Scholar 

  2. Wende M, Gladysz JA (2003) Fluorous catalysis under homogeneous conditions without fluorous solvents: a “greener” catalyst recycling protocol based upon temperature-dependent solubilities and liquid/solid phase separation. J Am Chem Soc 125:5861–5872

    Article  CAS  Google Scholar 

  3. Bergbreiter DE, Furyk S (2004) Microwave promoted Heck reactions using an oligo(ethyleneglycol)-bound SCS palladacycle under thermomorphic conditions. Green Chem 6:280–285

    Article  CAS  Google Scholar 

  4. Bergbreiter DE (2002) Using soluble polymers to recover catalysts and ligands. Chem Rev 102:3345–3384

    Article  CAS  Google Scholar 

  5. Li CJ (2005) Organic reactions in aqueous media with a focus on carbon–carbon bond formations: a decade update. Chem Rev 105:3095–3165

    Article  CAS  Google Scholar 

  6. Li SJ, Ge Y, Tiwari A, Cao SS (2010) A temperature-responsive nanoreactor. Small 6:2453–2459

    Article  CAS  Google Scholar 

  7. Rieger J, Antoun T, Lee SH, Chenal M, Pembouong G, de la Haye TL, Azcarate I, Hasenknopf B, Lacôte E (2012) Synthesis and characterization of a thermoresponsive polyoxometalate-polymer hybrid. Chem Eur J 18:3355–3361

    Article  CAS  Google Scholar 

  8. Luo B, Song XJ, Zhang F, Xia A, Yang WL, Hu JH, Wang CC (2010) Multi-functional thermosensitive composite microspheres with high magnetic susceptibility based on magnetite colloidal nanoparticle clusters. Langmuir 26:1674–1679

    Article  CAS  Google Scholar 

  9. Nagase K, Kobayashi J, Kikuchi A, Akiyama Y, Kanazawa H, Nkano T (2012) High stability of thermoresponsive polymer-brush-grafted silica beads as chromatography matrices. Appl. Mater. Interfaces. 4:1998–2008

    Article  CAS  Google Scholar 

  10. Hamamoto H, Suzuki Y, Yamada YMA, Tabata H, Takahashi H, Ikegami S (2005) A recyclable catalytic system based on a temperature-responsive catalyst. Angew Chem Int Ed 44:4536–4538

    Article  CAS  Google Scholar 

  11. Wu XW, Hu YF, Wang XH, Chen L (2015) Thermo-responsive polymer micelle-based nanoreactors for intelligent polyoxometalate catalysis. Catal Commun 58:164–168

    Article  CAS  Google Scholar 

  12. Gu QQ, Zhu WS, Xun SH, Chang YH, Xiong J, Zhang M, Jiang W, Zhu FX, Li HM (2014) Preparation of highly dispersed tungsten species within mesoporous silica by ionic liquid and their enhanced catalytic activity for oxidative desulfurization. Fuel 117:667–673

    Article  CAS  Google Scholar 

  13. Nogueira LS, Ribeiro S, Granadeiro CM, Pereira E, Feio G, Cunha-Silva L, Balula SS (2014) Novel polyoxometalate silica nano-sized spheres:efficient catalysts for olefin oxidation and the deep desulfurization process. Dalton Trans 43:9518–9528

    Article  CAS  Google Scholar 

  14. Zhao S, Jia YQ, Song YF (2013) Highly efficient and selective oxidation of various substrates under mild conditions using a lanthanum-containing polyoxometalate as catalyst. Appl. Catal. A: Gen. 453:188–194

    Article  CAS  Google Scholar 

  15. Ding YX, Zhu WS, Li HM, Jiang W, Zhang M, Duan YQ, Chang YH (2011) Catalytic oxidative desulfurization with a hexatungstate/aqueous H2O2/ionic liquid emulsion system. Green Chem 13:1210–1216

    Article  CAS  Google Scholar 

  16. Ge JH, Zhou YM, Yang Y, Xue MW (2011) Catalytic oxidative desulfurization of gasoline using ionic liquid emulsion system. Ind Eng Chem Res 50:13686–13692

    Article  CAS  Google Scholar 

  17. Abdalla ZEA, Li B (2012) Preparation of MCM-41 supported (Bu4N)4H3(PW11O39) catalyst and its performance in oxidative desulfurization. Chem Eng J 200–202:113–121

    Article  Google Scholar 

  18. Ribeiro S, Granadeiro CM, Silva P, Paz FAA, Biani FF, Cunha-Silva L, Balula SS (2013) An efficient oxidative desulfurization process using terbium-polyoxometalate@MIL-101(Cr). Catal. Sci. Technol. 3:2404–2414

    Article  CAS  Google Scholar 

  19. Yan XM, Mei ZK, Mei P, Yang QF (2014) Self-assembled HPW/silica-alumina mesoporous nanocomposite as catalysts for oxidative desulfurization of fuel oil. J Porous Mater 21:729–737

    Article  CAS  Google Scholar 

  20. Yan XM, Mei P, Xiong L, Gao L, Yang QF, Gong LJ (2013) Mesoporous titania-silica-polyoxometalate nanocomposite materials for catalytic oxidation desulfurization of fuel oil. Catal. Sci. Technol. 3:1985–1992

    Article  CAS  Google Scholar 

  21. Zhang M, Zhu WS, Xun SH, Li HM, Gu QQ, Zhao Z, Wang Q (2013) Deep oxidative desulfurization of dibenzothiophene with POM-based hybrid materials in ionic liquids. Chem Eng J 220:328–336

    Article  CAS  Google Scholar 

  22. Ribeiro S, Barbosa ADS, Gomes AC, Pillinger M, Gonçalves IS, Cunha-Silva L, Balula SS (2013) Catalytic oxidative desulfurization systems based on Keggin phosphotungstate and metal-organic framework MIL-101. Fuel Process Technol 116:350–357

    Article  CAS  Google Scholar 

  23. Yu FL, Wang R (2013) Deep oxidative desulfurization of dibenzothiophene in simulated oil and real diesel using heteropolyanion-substituted hydrotalcite-like compounds as catalysts. Molecules 18:13691–13704

    Article  CAS  Google Scholar 

  24. Zhu WS, Zhu GP, Li HM, Chao YH, Zhang M, Du DL, Wang Q, Zhao Z (2013) Catalytic kinetics of oxidative desulfurization with surfactant-type polyoxometalate-based ionic liquids. Fuel Process Technol 106:70–76

    Article  CAS  Google Scholar 

  25. He LN, Li HM, Zhu WS, Guo JX, Jiang X, Lu JD, Yan YS (2008) Deep oxidative desulfurization of fuels using peroxophosphomolybdate catalysts in ionic liquids. Ind Eng Chem Res 47:6890–6895

    Article  CAS  Google Scholar 

  26. Xu J, Li HC, Wang ST, Luo F, Liu YY, Wang XH, Jiang ZJ (2014) Ultra-deep desulfurization via reactive adsorption on peroxophosphomolybdate/agarose hybrids. Chemosphere 111:631–637

    Article  CAS  Google Scholar 

  27. Julião D, Gomes AC, Pillinger M, Cunha-Silva L, Castro BD, Gonçalves IS, Balula SS (2015) Desulfurization of model diesel by extraction/oxidation using a zinc-substituted polyoxometalate as catalyst under homogeneous and heterogeneous (MIL-101(Cr) encapsulated) conditions. Fuel Process Technol 131:78–86

    Article  Google Scholar 

  28. Xu JH, Zhao S, Chen W, Wang M, Song YF (2012) Highly efficient extraction and oxidative desulfurization system using Na7H2LaW10O36·32H2O in [bmim]BF4 at room temperature. Chem Eur J 18:4775–4781

    Article  CAS  Google Scholar 

  29. Lü HY, Gao JB, Jiang ZX, Jing F, Yang YX, Wang G, Li C (2006) Ultra-deep desulfurization of diesel by selective oxidation with [C18H37N(CH3)3]4[H2NaPW10O36] catalyst assembled in emulsion droplets. J Catal 239:369–375

    Article  Google Scholar 

  30. Li C, Jiang ZX, Gao JB, Yang YX, Wang SJ, Tian FP, Sun FX, Sun XP, Ying PL, Han CR (2004) Ultra-deep desulfurization of diesel: oxidation with a recoverable catalyst assembled in emulsion. Chem Eur J 10:2277–2280

    Article  CAS  Google Scholar 

  31. Zhang M, Zhu WS, Xun SH, Xiong J, Ding WJ, Li M, Wang Q, Li HM (2015) Enhanced oxidative desulfurization of dibenzothiophene by functional mo-containing mesoporous silica. Chem Eng Technol 38:117–124

    Article  CAS  Google Scholar 

  32. Wang R, Yu FL, Zhang GF, Zhao HX (2010) Performance evaluation of the carbon nanotubes supported Cs2.5H0.5PW12O40 as efficient and recoverable catalyst for the oxidative removal of dibenzothiophene. Catal Today 150:37–41

    Article  CAS  Google Scholar 

  33. Hamamoto H, Suzuki Y, Takahashi H, Ikegamia S (2007) A new solid-phase reaction system utilizing a temperature responsive catalyst: oxidative cyclization with hydrogen peroxide. Adv Synth Catal 349:2685–2689

    Article  CAS  Google Scholar 

  34. Dengel AC, Griffith WP, Parkin BC (1993) Studies on polyoxo- and polyperoxo-metalates. Part 1. Tetrameric heteropolyperoxotungstates and heteropolyperoxomolybdates. J Chem Soc, Dalton Trans 18:2683–2688

    Article  Google Scholar 

  35. Feng Q, Du LZ, Yan QZ, Ge CC (2011) Effects of synthesis-solvent on characteristics of poly(N-isopropylacrylamide) hydrogels synthesized by frontal polymerization. Adv Mater Res 295–297:1193–1197

    Article  Google Scholar 

  36. Clesceri LS, Greenberg AE, Eaton AD (1998) Standard methods for the examination of water and wastewater, 20th edn. American Public Health Association, Washington, DC

    Google Scholar 

  37. Venturello C, D’Aloisio R (1988) Quaternary ammonium Tetrakis(diperoxotungsto)phosphates(3-) as a new class of catalysts for efficient alkene epoxidation with hydrogen peroxide. J Org Chem 53:1553–1557

    Article  CAS  Google Scholar 

  38. Li DF, Guo YH, Hu CW, Mao L, Wang EB (2002) Photocatalytic degradation of aqueous formic acid over the silica composite films based on lacunary Keggin-type polyoxometalates. Appl Catal A 235:11–20

    Article  CAS  Google Scholar 

  39. Ohno T, Masaki Y, Hirayama S, Matsumura M (2001) TiO2-photocatalyzed epoxidation of 1-decene by H2O2 under visible light. J Catal 204:163–168

    Article  CAS  Google Scholar 

  40. Xu LL, Li W, Hu JL, Li KX, Yang X, Ma FY, Guo YN, Yu XD, Guo YH (2009) Transesterification of soybean oil to biodiesel catalyzed by mesostructured Ta2O5-based hybrid catalysts functionalized by both alkyl-bridged organosilica moieties and Keggin-type heteropoly acid. J Mater Chem 19:8571–8579

    Article  CAS  Google Scholar 

  41. Premchand YD, Suthanthiraraj SA (2004) Structural investigation of (CuI)0.45–(Ag2WO4)0.55 solid electrolyte using X-ray photoelectron and laser Raman spectroscopies. Electrochem Commun 6:1266–1269

    Article  CAS  Google Scholar 

  42. Zhu WS, Huang WL, Li HM, Zhang M, Jiang W, Chen GY, Han CR (2011) Polyoxometalate-based ionic liquids as catalysts for deep desulfurization of fuels. Fuel Process Technol 92:1842–1848

    Article  CAS  Google Scholar 

  43. Zou F, Wu XY, Zhu WS, Li HM, Xu D, Xu H (2011) Oxidative desulfurization of fuel catalyzed by amphiphilic peroxomolybdate. Petrol. Sci. Tech. 29:1113–1121

    Article  CAS  Google Scholar 

  44. Zhang J, Wang AJ, Li X, Ma XH (2011) Oxidative desulfurization of dibenzothiophene and diesel over [Bmim]3PMo12O40. J Catal 279:269–275

    Article  CAS  Google Scholar 

  45. Li Y, Tanaka T (1989) Study of the universality class of the gel network system. J. Chem. Phys. 90:5161–5166

    Article  CAS  Google Scholar 

  46. Huang WL, Zhu WS, Li HM, Shi H, Zhu GP, Liu H, Chen GY (2010) Heteropolyanion-based ionic liquid for deep desulfurization of fuels in ionic liquids. Ind Eng Chem Res 49:8998–9003

    Article  CAS  Google Scholar 

  47. Otsuki S, Nonaka T, Takashima N, Qian W, Ishihara A, Imai T, Kabe T (2000) Oxidative desulfurization of light gas oil and vacuum gas oil by oxidation and solvent extraction. Energ. Fuel. 14:1232–1239

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful for the financial supported by the National Natural Science Foundation of China (51308097), the foundation of Jilin Provincial Environmental Protection Bureau (No. 200929). We are also appreciate for the help from Dr. Zijiang Jiang on the 31P MAS NMR results of our catalysts.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yingna Guo, Xiaohong Wang or Zijiang Jiang.

Additional information

Shucheng Sun and Xia Yu have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 8585 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, S., Yu, X., Guo, Y. et al. Temperature-Responsive Polyoxometalate Catalysts for DBT Desulfurization in One-Pot Oxidation Combined with Extraction. Catal Surv Asia 20, 98–108 (2016). https://doi.org/10.1007/s10563-016-9211-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10563-016-9211-0

Keywords

Navigation