Skip to main content
Log in

Oxidative desulfurization of thiophene derivatives with H2O2 in the presence of catalysts based on MoO3/Al2O3 under mild conditions

  • Published:
Kinetics and Catalysis Aims and scope Submit manuscript

Abstract

The catalysts based on MoO3/Al2O3 were synthesized and tested using aqueous hydrogen peroxide as the oxidant in the oxidative desulfurization of thiophene, benzothiophene (BT) and dibenzothiophene (DBT) into the corresponding sulfones. Among catalysts tested, 15%(MoO3–WO3)/Al2O3 prepared by a conventional impregnation method was considerably active for the oxidation of thiophene, BT and DBT, which could achieve higher than 99.2% conversions at lower reaction temperature (≤338 K). The use of hexadecyltrimethyl ammonium bromide as the phase-transfer reagent in small amounts could promote the reaction efficiently.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Campos-Martin, J.M., Capel-Sanchez, M.C., and Fierro, J.L.G., Green Chem., 2004, vol. 6, p. 557.

    Article  CAS  Google Scholar 

  2. Mei, H., Mei, B.W., and Yen, T.F., Fuel, 2003, vol. 82, p. 405.

    Article  CAS  Google Scholar 

  3. Song, C., Catal. Today, 2003, vol. 86, p. 211.

    Article  CAS  Google Scholar 

  4. Babich, I.V. and Moulijin, J.A., Fuel, 2003, vol. 82, p. 607.

    Article  CAS  Google Scholar 

  5. Wang, A., Wang, Y., Kabe, T., Chen, Y., Ishihara, A., Qian, W., and Yao, P., J. Catal., 2002, vol. 210, p. 319.

    Article  CAS  Google Scholar 

  6. Te, M., Fairbridge, C., and Ring, Z., Appl. Catal., A, 2001, vol. 219, p. 267.

    Article  CAS  Google Scholar 

  7. Mokhtar, W.N.A.W., Bakar, W.A.W.A., Ali, R., and Kadir, A.A.A., Fuel, 2015, vol. 161, p. 26.

    Article  CAS  Google Scholar 

  8. Yu, F.L. and Wang, R., Molecules, 2013, vol. 18, p. 13691.

    Article  CAS  Google Scholar 

  9. Joskic, R., Margeta, D., and Sertic-Bionda, K., Goriva Maziva, 2014, vol. 53, no. 1, p. 11.

    Google Scholar 

  10. Yazu, K., Yamamoto, Y., Furuya, T., Miki, K., and Ukegawa, K., Energy Fuels, 2001, vol. 15, p. 1535.

    Article  CAS  Google Scholar 

  11. Shiraishi, Y. and Hirai, T., Energy Fuels, 2004, vol. 18, p. 37.

    Article  CAS  Google Scholar 

  12. Lo, W.H., Yang, H.Y., and Wei, G.T., Green Chem., 2003, vol. 5, p. 639.

    Article  CAS  Google Scholar 

  13. Baruah, B.P. and Khare, P., Energy Fuels, 2007, vol. 21, p. 2156.

    Article  CAS  Google Scholar 

  14. Komintarachat, C. and Trakarnpruk, W., Ind. Eng. Chem. Res., 2006, vol. 45, p. 1853.

    Article  CAS  Google Scholar 

  15. March, J., Advanced Organic Chemistry, New York: Wiley–Interscience, 1992.

    Google Scholar 

  16. Te, M., Fairbridge, C., and Ring, Z., Appl. Catal., A, 2001, vol. 219, p. 267.

    Article  CAS  Google Scholar 

  17. Palomeque, J., Clacens, J.M., and Figueras, F., J. Catal., 2002, vol. 211, p. 103.

    Article  CAS  Google Scholar 

  18. Shiraishi, Y., Naito, T., and Hirai, T., Ind. Eng. Chem. Res., 2003, vol. 42, p. 6034.

    Article  CAS  Google Scholar 

  19. Javadli, R. and Klerk, A.D., Energy Fuels, 2012, vol. 26, p. 594.

    Article  CAS  Google Scholar 

  20. Gutierrez, J.L.G., Fuentes, G.A., and Teran, M.E.H., Appl. Catal., A, 2008, vol. 334, p. 366.

    Article  Google Scholar 

  21. Choudary, B.M., Reddy, C.R.V., Prakash, B.V., Kantam, M.L., and Sreedhar, B., Chem. Commun., 2003, p. 754.

    Google Scholar 

  22. Figueras, F., Palomeque, J., Loridant, S., Feche, C., Ensayen, N., and Gelbard, G., J. Catal., 2004, vol. 226, p. 25.

    Article  CAS  Google Scholar 

  23. Gong, Y.J., Dou, T., Kang, S.J., Li, Q., and Hu, Y.F., Fuel Process. Technol., 2009, vol. 90, p. 122.

    Article  CAS  Google Scholar 

  24. Collins, F.M., Lucy, A.R., and Sharp, C., J. Mol. Catal. A: Chem., 1997, vol. 117, p. 397.

    Article  CAS  Google Scholar 

  25. Huang, D., Wang, Y.J., Yang, L.M., and Luo, G.S., Ind. Eng. Chem. Res., 2006, vol. 45, p. 1880.

    Article  CAS  Google Scholar 

  26. Huang, D., Zhai, Z., Lu, Y.C., Yang, L.M., and Luo, G.S., Ind. Eng. Chem. Res., 2007, vol. 46, p. 1447.

    Article  CAS  Google Scholar 

  27. Bonde, S.E., Gore, W., Dolbear, G.E., and Skov, E.R., Prepr. Am. Chem. Soc., Div. Pet. Chem., 2000, vol. 45, p. 364.

    CAS  Google Scholar 

  28. Bonde, S.E., Gore, W., and Dolbear, G.E., Prepr. Am. Chem. Soc., Div. Pet. Chem., 1999, vol. 44, p. 199.

    CAS  Google Scholar 

  29. Dolbear, G.E. and Skov, E.R., Prepr. Am. Chem. Soc., Div. Pet. Chem., 2000, vol. 45, p. 375.

    CAS  Google Scholar 

  30. Griffith, W.P. and Lesniak, P.J.B., J. Chem. Soc. A, 1969, p. 1066.

    Google Scholar 

  31. Lu, H., Gao, J., Jiang, Z., Jing, F., Yang, Y., and Wang, G., J. Catal., 2006, vol. 239, p. 369.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to X. Ma or Q. Xia.

Additional information

Published in Russian in Kinetika i Kataliz, 2017, Vol. 58, No. 1, pp. 30–35.

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, Y., Lu, X., Ma, X. et al. Oxidative desulfurization of thiophene derivatives with H2O2 in the presence of catalysts based on MoO3/Al2O3 under mild conditions. Kinet Catal 58, 28–33 (2017). https://doi.org/10.1134/S0023158417010086

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0023158417010086

Keywords

Navigation