Skip to main content
Log in

Methanol-to-Olefin Conversion over Zeolite Catalysts: Active Intermediates and Deactivation

  • Published:
Catalysis Surveys from Asia Aims and scope Submit manuscript

Abstract

Methanol-to-olefin (MTO) conversion over various zeolites with different topologies, Si/Al molar ratios, and crystallite sizes were investigated to verify the effects of pore shape and size, acidity, and external surface area on the catalytic activity, product selectivity, and deactivation. The IR and electron spin resonance (ESR) study of zeolite catalysts used in MTO also proceeded to deduce the active intermediates formed in their cages or pores. The zeolites with 8 membered-ring (MR) pore entrances such as CHA, ERI, LTA, and UFI commonly exhibited high selectivity to lower olefins due to their small entrances, but the CHA catalyst with the smallest cage maintained its activity longer than other 8MR zeolites. The slow condensation of polymethylbenzene (PolyMB) to polyaromatic hydrocarbons (PAH) on MOR zeolite with a high Si/Al molar ratio due to its low concentration of strong acid sites resulted in a slow deactivation. The extremely small crystallites of H-SAPO-34 and H-ZSM-5 less than 100 nm showed an adverse effect in MTO; while the large crystallites above 1,000 nm also exhibited poor catalytic performance because of their small external surface. The study of IR regarding the adsorbed and occluded materials on zeolites demonstrated the effect of pore shape and size on the active intermediates: the zeolites with larger pores and cages allowed the formation of alkylbenzenes with long alkyl groups which preferred to be condensated to PAH. The well-resolved hyperfine splitting of ESR spectra observed on H-SAPO-34 used in MTO clearly illustrated the presence of hexamethylbenzenium radical cations. The small intersections of phosphorous-modified H-ZSM-5 allowed the formation of tetramethylbenzenium radical cations in MTO. The formation of PolyMB radical cations, their role as active intermediates and the effect of topology, acidity, and crystallite size of zeolites on their deactivation were discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Chang CD (1984) Catal Rev Sci Eng 26(3–4):323

    Article  CAS  Google Scholar 

  2. Olsbye U, Svelle S, Bjørgen M, Beato P, Janssens TVW, Joensen F, Bordiga S, Lillerud KP (2012) Angew Chem Int Ed 51:2

    Article  Google Scholar 

  3. Stöcker M (1999) Microporous Mesoporous Mater 29:3

    Article  Google Scholar 

  4. Hereijgers BPC, Bleken F, Nilsen MH, Svelle S, Lillerud K-P, Bjørgen M, Weckhuysen BM, Olsbye U (2009) J Catal 264:77

    Article  CAS  Google Scholar 

  5. Ilias S, Bhan A (2013) ACS Catal 3:18

    Article  CAS  Google Scholar 

  6. Chen D, Moljord K, Holmen A (2012) Microporous Mesoporous Mater 164:239

    Article  CAS  Google Scholar 

  7. Lee HS, Lee Y, Park S-S, Chae H-J, Jeong S-Y, Lee DH (2010) Korean J Chem Eng 27(4):1328

    Article  CAS  Google Scholar 

  8. Álvaro-Muñoz T, Márquez-Álvarez C, Sastre E (2012) Catal Today 179:27

    Article  Google Scholar 

  9. Salmasi M, Fatemi S, Najafabadi AT (2011) J Ind Eng Chem 17:755

    Article  CAS  Google Scholar 

  10. Li J, Wei Y, Liu G, Qi Y, Tian P, Li B, He Y, Liu Z (2011) Catal Today 171:221

    Article  CAS  Google Scholar 

  11. Nishiyama N, Kawaguchi M, Hirota Y, Vu DV, Egashira Y, Ueyama K (2009) Appl Catal A 362:193

    Article  CAS  Google Scholar 

  12. Bleken FL, Chavan S, Olsbye U, Boltz M, Ocampo F, Louis B (2012) Appl Catal A 447–448:178

    Article  Google Scholar 

  13. Vu DV, Hirota Y, Nishiyama N, Egashira Y, Ueyama K (2010) J Jpn Petrol Inst 53(4):232

    Article  CAS  Google Scholar 

  14. Bjørgen M, Svelle S, Joensen F, Nerlov J, Kolboe S, Bonino F, Palumbo L, Bordiga S, Olsbye U (2007) J Catal 249:195

    Article  Google Scholar 

  15. Haw JF, Song W, Marcus DM, Nicholas JB (2003) Acc Chem Res 36:317

    Article  CAS  Google Scholar 

  16. Haw JF, Marcus DM (2005) Top Catal 34:41

    Article  CAS  Google Scholar 

  17. Lesthaeghe D, Horré A, Waroquier M, Marin GB, Van Speybroeck V (2009) Chem Eur J 15:10803

    Article  CAS  Google Scholar 

  18. Hill IM, Hashimi SA, Bhan A (2012) J Catal 285:115

    Article  CAS  Google Scholar 

  19. Izadbakhsh A, Farhadi F, Khorasheh F, Sahebdelfar S, Asadi M, Feng YZ (2009) Appl Catal A 364:48

    Article  CAS  Google Scholar 

  20. Bjørgen M, Akyalcin S, Olsbye U, Benard S, Kolboe S, Svelle S (2010) J Catal 275:170

    Article  Google Scholar 

  21. Bjørgen M, Joensen F, Lillerud K-P, Olsbye U, Svelle S (2009) Catal Today 142:90

    Article  Google Scholar 

  22. Schulz H (2010) Catal Today 154:183

    Article  CAS  Google Scholar 

  23. Lesthaeghe D, Van der Mynsbrugge J, Vandichel M, Waroquier M, Van Speybroeck V (2011) ChemCatChem 3:208

    Article  CAS  Google Scholar 

  24. Wang C-M, Wang Y-D, Liu H-X, Xie Z-K, Liu Z-P (2012) Microporous Mesoporous Mater 158:264

    Article  CAS  Google Scholar 

  25. Park JW, Lee JY, Kim KS, Hong SB, Seo G (2008) Appl Catal A 339:36

    Article  CAS  Google Scholar 

  26. Park JW, Kim SJ, Seo M, Kim SY, Sugi Y, Seo G (2008) Appl Catal A 349:76

    Article  CAS  Google Scholar 

  27. Lee KY, Chae H-J, Jeong S-Y, Seo G (2009) Appl Catal A 369:60

    Article  CAS  Google Scholar 

  28. Jang H-G, Min H-K, Lee JK, Hong SB, Seo G (2012) Appl Catal A 437–438:120

    Article  Google Scholar 

  29. Kim SJ, Jang H-G, Lee JK, Min H-K, Hong SB, Seo G (2011) Chem Commun 47:9498

    Article  CAS  Google Scholar 

  30. Jang H-G, Min H-K, Hong SB, Seo G (2013) J Catal 299:240

    Article  CAS  Google Scholar 

  31. Park JW, Seo G (2009) Appl Catal A 356:180

    Article  CAS  Google Scholar 

  32. Lewis GJ, Miller MA, Moscoso JG, Wilso BA, Knight LM, Wilson ST (2004) Stud Surf Sci Catal 154A:364

    Article  CAS  Google Scholar 

  33. Blackwell CS, Broach RW, Gatter MG, Holmgren JS, Jan D-Y, Lewis GJ, Mezza BJ, Mezza TM, Miller MA, Moscoso JG, Patton RL, Rohde LM, Schoonover MW, Sinkler W, Wilson BA, Wilson ST (2003) Angew Chem Int Ed 42:1737

    Article  CAS  Google Scholar 

  34. Baser H, Selvam T, Ofili J, Herrmann R, Schwieger W (2007) Stud Surf Sci Catal 170A:487

    Google Scholar 

  35. Mertens M, Stromaier KG (2004) US Patent 6,773,688

  36. You YS, Shim J-S, Kim J-H, Seo G (1999) Catal Lett 59:221

    Article  CAS  Google Scholar 

  37. Sugi Y, Tawada S, Sugimura T, Kubota Y, Hanaoka T, Matsuzaki T, Nakajima K (1999) Appl Catal A 189:251

    Article  CAS  Google Scholar 

  38. Kim HG, Lee KY, Jang H-G, Song YS, Seo G (2010) Korean J Chem Eng 27(6):1773

    Article  CAS  Google Scholar 

  39. Mertens M, Stromaier KG (2005) US Patent 6,903,240

  40. Van Heyden H, Mintova S, Bein T (2008) Chem Mater 20:2956

    Article  Google Scholar 

  41. Song W, Justice RE, Jones CA, Grassian VH, Larsen SC (2004) Langmuir 20:8301

    Article  CAS  Google Scholar 

  42. Cheng Y, Liao RH, Li JS, Sun XY, Wang LJ (2008) J Mater Process Technol 206:445

    Article  CAS  Google Scholar 

  43. Guth JL, Kessler H, Wey R (1986) Stud Surf Sci Catal 28:121

    Article  CAS  Google Scholar 

  44. Meyers RA (2000) Encyclopedia of analytical chemistry: applications, theory, and instrumentation. Wiley, Chichester

    Google Scholar 

  45. Olsbye U, Bjørgen M, Svelle S, Lillerud K-P, Kolboe S (2005) Catal Today 106:108

    Article  CAS  Google Scholar 

  46. Zones SI (1985) US Patent 4,544,538

  47. Corio PL, Shih S (1970) J Catal 18:126

    Article  CAS  Google Scholar 

  48. Kim SJ, Jang H-G, Seo G (2013) Korean Chem Eng Res 51(2):181

    Article  CAS  Google Scholar 

  49. Song KW, Seo G, Shin C-H (2011) Korean Chem Eng Res 49(5):521

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2009-0094055).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gon Seo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seo, G., Kim, JH. & Jang, HG. Methanol-to-Olefin Conversion over Zeolite Catalysts: Active Intermediates and Deactivation. Catal Surv Asia 17, 103–118 (2013). https://doi.org/10.1007/s10563-013-9157-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10563-013-9157-4

Keywords

Navigation