Skip to main content
Log in

Catalytic Conversion of Chloromethane to Olefins and Aromatics Over Zeolite Catalysts

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

We report the tunable conversion of chloromethane to olefins and aromatics using different metal-promoted zeolites as catalysts. Despite SAPO-34 was industrially used as catalysts for methanol to olefins reaction (MTO), the SAPO-34 based zeolites exhibited low activity and short lifetime when using chloromethane as the feed. Higher chloromethane conversion and longer catalyst lifetime were found on H-ZSM-5. The activity and product distribution can be improved by optimizing the reaction temperature and space velocity. Impregnating the H-ZSM-5 zeolite with 1 wt% and 5 wt% metal oxide as promoters significantly enhanced the conversion efficiency and altered the product distribution. The highest aromatics selectivity (38%) was obtained on the H-ZSM-5 zeolite promoted by 5 wt% Ni, whereas on 5 wt% Mg and 5 wt% Mn promoted H-ZSM-5, the aromatics selectivity is merely 5%. Therefore, different modified H-ZSM-5 could be used to convert chloromethane to either aromatics or olefin-heavy products. It was found that the aromatics yield is strongly correlated to the acidity of the H-ZSM-5 zeolite.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Sun Q, Tang Y, Gavalas GR (2000) Methane pyrolysis in a hot filament reactor. Energy Fuels 14:490–494

    CAS  Google Scholar 

  2. Fau G, Gascoin N, Gillard P, Steelant J (2013) Methane pyrolysis: literature survey and comparisons of available data for use in numerical simulations. J Anal Appl Pyrol 104:1–9

    CAS  Google Scholar 

  3. Keller GE, Bhasin MM (1982) Synthesis of ethylene via oxidative coupling of methane: I. Determination of active catalysts. J Catal 73:9–19

    CAS  Google Scholar 

  4. Crabtree RH (1995) Aspects of methane chemistry. Chem Rev 95:987–1007

    CAS  Google Scholar 

  5. Kanitkar S, Carter JH, Hutchings GJ, Ding K, Spivey JJ (2018) Low temperature direct conversion of methane using a solid superacid. ChemCatChem 10:5019–5024

    Google Scholar 

  6. Olah GA (1987) Electrophilic methane conversion. Acc Chem Res 20:422–428

    CAS  Google Scholar 

  7. Podkolzin SG, Stangland EE, Jones ME, Peringer E, Lercher JA (2007) Methyl chloride production from methane over lanthanum-based catalysts. J Am Chem Soc 129:2569–2576

    CAS  PubMed  Google Scholar 

  8. Lorkovic I, Noy M, Weiss M, Sherman J, McFarland E, Stucky GD, Ford PC (2004) C1 coupling via bromine activation and tandem catalytic condensation and neutralization over CaO/zeolite composites. Chem Commun. https://doi.org/10.1039/B314118G

    Article  Google Scholar 

  9. Breed A, Doherty MF, Gadewar S, Grosso P, Lorkovic IM, McFarland EW, Weiss MJ (2005) Natural gas conversion to liquid fuels in a zone reactor. Catal Today 106:301–304

    CAS  Google Scholar 

  10. Wang B, Albarracín-Suazo S, Pagán-Torres Y, Nikolla E (2017) Advances in methane conversion processes. Catal Today 285:147–158

    CAS  Google Scholar 

  11. Olah GA, Gupta B, Felberg JD, Ip WM, Husain A, Karpeles R, Lammertsma K, Melhotra AK, Trivedi NJ (1985) Electrophilic reactions at single bonds. 20. Selective monohalogenation of methane over supported acidic or platinum metal catalysts and hydrolysis of methyl halides over.gamma.-alumina-supported metal oxide/hydroxide catalysts. A feasible path for the oxidative conversion of methane into methyl alcohol/dimethyl ether. J Am Chem Soc 107:7097–7105

    CAS  Google Scholar 

  12. Weissman M, Benson SW (1984) Pyrolysis of methyl chloride, a pathway in the chlorine-catalyzed polymerization of methane. Int J Chem Kinet 16:307–333

    CAS  Google Scholar 

  13. Holmen A (2009) Direct conversion of methane to fuels and chemicals. Catal Today 142:2–8

    CAS  Google Scholar 

  14. Van de Walle CG (1993) Wide-band-gap semiconductors, 1st edn. North-Holland, Amsterdam

    Google Scholar 

  15. Olah GA, Doggweiler H, Felberg JD, Frohlich S, Grdina MJ, Karpeles R, Keumi T, Inaba S-I, Ip WM, Lammertsma K, Salem G, Tabor D (1984) Onium YLIDE chemistry. 1. Bifunctional acid-base-catalyzed conversion of heterosubstituted methanes into ethylene and derived hydrocarbons. The onium ylide mechanism of the C1 fwdarw. C2 conversion. J Am Chem Soc 106:2143–2149

    CAS  Google Scholar 

  16. Wei Y, Zhang D, Liu Z, Su B-L (2012) Methyl halide to olefins and gasoline over zeolites and SAPO catalysts: a new route of MTO and MTG. Chin J Catal 33:11–21

    CAS  Google Scholar 

  17. Taylor CE (2000) Conversion of substituted methanes over ZSM-catalysts. In: Corma A, Melo FV, Mendioroz S, Fierro JLG (eds) Studies in surface science and catalysis. Elsevier, Amsterdam, pp 3633–3638

    Google Scholar 

  18. Wei Y, Zhang D, Xu L, Liu Z, Su B-L (2005) New route for light olefins production from chloromethane over HSAPO-34 molecular sieve. Catal Today 106:84–89

    CAS  Google Scholar 

  19. Svelle S, Aravinthan S, Bjørgen M, Lillerud K-P, Kolboe S, Dahl IM, Olsbye U (2006) The methyl halide to hydrocarbon reaction over H-SAPO-34. J Catal 241:243–254

    CAS  Google Scholar 

  20. Wei Y, Zhang D, Liu Z, Su B-L (2006) Highly efficient catalytic conversion of chloromethane to light olefins over HSAPO-34 as studied by catalytic testing and in situ FTIR. J Catal 238:46–57

    CAS  Google Scholar 

  21. Zhang D, Xu L, Du A, Chang F, Su BL, Liu Z (2006) Chloromethane conversion to higher hydrocarbons over zeolites and SAPOs. Catal Lett 109:97–101

    CAS  Google Scholar 

  22. Wei Y, Zhang D, He Y, Xu L, Yang Y, Su B-L, Liu Z (2007) Catalytic performance of chloromethane transformation for light olefins production over SAPO-34 with different Si content. Catal Lett 114:30–35

    CAS  Google Scholar 

  23. Wei Y, He Y, Zhang D, Xu L, Meng S, Liu Z, Su B-L (2006) Study of Mn incorporation into SAPO framework: synthesis, characterization and catalysis in chloromethane conversion to light olefins. Microporous Mesoporous Mater 90:188–197

    CAS  Google Scholar 

  24. Wei Y, Zhang D, Xu L, Chang F, He Y, Meng S, Su B-L, Liu Z (2008) Synthesis, characterization and catalytic performance of metal-incorporated SAPO-34 for chloromethane transformation to light olefins. Catal Today 131:262–269

    CAS  Google Scholar 

  25. Tian P, Wei Y, Ye M, Liu Z (2015) Methanol to olefins (MTO): from fundamentals to commercialization. ACS Catal 5:1922–1938

    CAS  Google Scholar 

  26. Ibáñez M, Gamero M, Ruiz-Martínez J, Weckhuysen BM, Aguayo AT, Bilbao J, Castaño P (2016) Simultaneous coking and dealumination of zeolite H-ZSM-5 during the transformation of chloromethane into olefins. Catal Sci Technol 6:296–306

    Google Scholar 

  27. Barthos R, Bánsági T, Süli Zakar T, Solymosi F (2007) Aromatization of methanol and methylation of benzene over Mo2C/ZSM-5 catalysts. J Catal 247:368–378

    CAS  Google Scholar 

  28. Li J, Tong K, Xi Z, Yuan Y, Hu Z, Zhu Z (2016) Highly-efficient conversion of methanol to p-xylene over shape-selective Mg–Zn–Si-HZSM-5 catalyst with fine modification of pore-opening and acidic properties. Catal Sci Technol 6:4802–4813

    CAS  Google Scholar 

  29. Linstrom PJ, Mallard WG (eds) (2014) NIST chemistry WebBook, NIST standard reference database number 69, National Institute of Standards and Technology, Gaithersburg MD, 20899. https://doi.org/10.18434/T4D303.

  30. Zhang D, Wei Y, Xu L, Chang F, Liu Z, Meng S, Su B-L, Liu Z (2008) MgAPSO-34 molecular sieves with various Mg stoichiometries: Synthesis, characterization and catalytic behavior in the direct transformation of chloromethane into light olefins. Microporous Mesoporous Mater 116:684–692

    CAS  Google Scholar 

  31. Lersch P, Bandermann F (1991) Conversion of chloromethane over metal-exchanged ZSM-5 to higher hydrocarbons. Appl Catal 75:133–152

    CAS  Google Scholar 

  32. Conte M, Lopez-Sanchez JA, He Q, Morgan DJ, Ryabenkova Y, Bartley JK, Carley AF, Taylor SH, Kiely CJ, Khalid K, Hutchings GJ (2012) Modified zeolite ZSM-5 for the methanol to aromatics reaction. Catal Sci Technol 2:105–112

    CAS  Google Scholar 

  33. Niziolek AM, Onel O, Floudas CA (2015) Production of benzene, toluene, and xylenes from natural gas via methanol: process synthesis and global optimization. AIChE J 62:1531–1556

    Google Scholar 

  34. Wang C, Yang M, Tian P, Xu S, Yang Y, Wang D, Yuan Y, Liu Z (2015) Dual template-directed synthesis of SAPO-34 nanosheet assemblies with improved stability in the methanol to olefins reaction. J Mater Chem A 3:5608–5616

    CAS  Google Scholar 

  35. Nishiyama N, Kawaguchi M, Hirota Y, Van Vu D, Egashira Y, Ueyama K (2009) Size control of SAPO-34 crystals and their catalyst lifetime in the methanol-to-olefin reaction. Appl Catal A 362:193–199

    CAS  Google Scholar 

  36. Ren S, Liu G, Wu X, Chen X, Wu M, Zeng G, Liu Z, Sun Y (2017) Enhanced MTO performance over acid treated hierarchical SAPO-34. Chin J Catal 38:123–130

    CAS  Google Scholar 

  37. Salmasi M, Fatemi S, Najafabadi A (2011) Improvement of light olefins selectivity and catalyst lifetime in MTO reaction; using Ni and Mg-modified SAPO-34 synthesized by combination of two templates. J Ind Eng Chem 17:755–761

    CAS  Google Scholar 

  38. Tian P, Liu Z, Xu L, Sun C (2001) 05-P-18—Synthesis, characterization and catalysis of SAPO-56 and MAPSO-56 molecular sieves. In: Galarneau A, Fajula F, Di Renzo F, Vedrine J (eds) Studies in surface science and catalysis. Elsevier, Amsterdam, p 248

    Google Scholar 

  39. Xu L, Liu Z, Du A, Wei Y, Sun Z (2004) Synthesis, characterization, and MTO performance of MeAPSO-34 molecular sieves. In: Bao X, Xu Y (eds) Studies in surface science and catalysis. Elsevier, Amsterdam, pp 445–450

    Google Scholar 

  40. Salih HA, Muraza O, Abussaud B, Al-Shammari TK, Yokoi T (2018) Catalytic enhancement of SAPO-34 for Methanol conversion to light olefins using in situ metal incorporation. Ind Eng Chem Res 57:6639–6646

    CAS  Google Scholar 

  41. Rostamizadeh M, Taeb A (2015) Highly selective Me-ZSM-5 catalyst for methanol to propylene (MTP). J Ind Eng Chem 27:297–306

    CAS  Google Scholar 

  42. McIntosh RJ, Seddon D (1983) The properties of magnesium and zinc oxide treated zsm-5 catalysts for onversion of methanol into olefin-rich products. Appl Catal 6:307–314

    CAS  Google Scholar 

  43. Sanderson RT (1988) Principles of electronegativity. Part I. General nature. J Chem Educ 65:112

    CAS  Google Scholar 

  44. Tanaka K-I, Ozaki A (1967) Acid-base properties and catalytic activity of solid surfaces. J Catal 8:1–7

    CAS  Google Scholar 

  45. Politzer P, Murray JS (2018) Electronegativity—a perspective. J Mol Model 24:214

    PubMed  Google Scholar 

  46. Tamura M, Shimizu K-I, Satsuma A (2012) Comprehensive IR study on acid/base properties of metal oxides. Appl Catal A 433–434:135–145

    Google Scholar 

  47. Horiuchi T, Hidaka H, Fukui T, Kubo Y, Horio M, Suzuki K, Mori T (1998) Effect of added basic metal oxides on CO2 adsorption on alumina at elevated temperatures. Appl Catal A 167:195–202

    CAS  Google Scholar 

  48. Li X, Han D, Wang H, Liu G, Wang B, Li Z, Wu J (2015) Propene oligomerization to high-quality liquid fuels over Ni/HZSM-5. Fuel 144:9–14

    CAS  Google Scholar 

  49. Niu X, Gao J, Miao Q, Dong M, Wang G, Fan W, Qin Z, Wang J (2014) Influence of preparation method on the performance of Zn-containing HZSM-5 catalysts in methanol-to-aromatics. Microporous Mesoporous Mater 197:252–261

    CAS  Google Scholar 

  50. Kung HH (1989) Surface acidity. In: Kung HH (ed) Studies in surface science and catalysis. Elsevier, Amsterdam, pp 72–90

    Google Scholar 

  51. Engtrakul C, Mukarakate C, Starace AK, Magrini KA, Rogers AK, Yung MM (2016) Effect of ZSM-5 acidity on aromatic product selectivity during upgrading of pine pyrolysis vapors. Catal Today 269:175–181

    CAS  Google Scholar 

  52. Van der Borght K, Galvita VV, Marin GB (2015) Ethanol to higher hydrocarbons over Ni, Ga, Fe-modified ZSM-5: Effect of metal content. Appl Catal A 492:117–126

    Google Scholar 

  53. Zemann J (1965) Crystal structures, 2nd edition. Vol. 1 by R. W. G. Wyckoff. Acta Crystallogr 18:139–139

    Google Scholar 

  54. Bibby DM, Milestone NB, Patterson JE, Aldridge LP (1986) Coke formation in zeolite ZSM-5. J Catal 97:493–502

    CAS  Google Scholar 

  55. Gao J, Zheng Y, Jehng J-M, Tang Y, Wachs IE, Podkolzin SG (2015) Identification of molybdenum oxide nanostructures on zeolites for natural gas conversion. Science 348:686–690

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are thankful to Louisiana State University, Cain Department of Chemical Engineering on the NH3-TPD analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zi Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 243 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, D., Wang, Z., Meng, F. et al. Catalytic Conversion of Chloromethane to Olefins and Aromatics Over Zeolite Catalysts. Catal Lett 151, 1038–1048 (2021). https://doi.org/10.1007/s10562-020-03364-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-020-03364-z

Keywords

Navigation