Skip to main content

Advertisement

Log in

Dimethyl Ether—Reforming Catalysts for Hydrogen Production

  • Published:
Catalysis Surveys from Asia Aims and scope Submit manuscript

Abstract

This article reviews our recent works on dimethyl ether steam reforming (DME SR) over nanocomposite catalysts of copper-based spinel oxide and solid-acid catalyst. A series of Cu-based spinels was prepared by citric acid complexation method and their catalytic performance was studied in terms of activity, selectivity, and stability. The influence of preparation conditions, such as calcination temperature, reduction temperature, and chemical composition, and reforming conditions, such as steam-to-carbon ratio and reaction temperature, was systematically studied. Effect of type of solid-acid catalyst was also reported. Zeolite-based composites and alumina-based ones are highly active in temperature ranges of <300 °C and >300 °C, respectively. The composite of CuFe2O4 and alumina treated thermally in air at 700–800 °C exhibited excellent activity and stability in DME SR. Upon H2 reduction, phase separation of copper spinel to metallic copper nanoparticles and host oxides proceeds. The high dispersion of the Cu particles (Cu1+-rich surface of ca. 70%) on the hosts, and the strong chemical interaction between them could be observed. The H2-rich reformate (>70% H2) could be attained for longer than 800 h at 375 °C, showing the good potential for practical use in H2 and fuel cell applications. Doping Ni to CuFe2O4 significantly enhanced the stability of the catalyst, in accordance with the alloying effect. Regeneration of the degraded catalysts could be obtained by simple heat-treatment since carbon deposits were removed, and spinel structures were reconstructed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Scheme 1
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Semelsberger TA, Borup RL, Greene HL (2006) J Power Sources 156:497

    Article  CAS  Google Scholar 

  2. Nilsson M, Jozsa P, Pettersson LJ (2007) Appl Catal B Environ 76:42

    Article  CAS  Google Scholar 

  3. Faungnawakij K, Fukunaga T, Kikuchi R, Eguchi K (2008) J Catal 256:37

    Article  CAS  Google Scholar 

  4. Faungnawakij K, Kikuchi R, Shimoda N, Fukunaga T, Eguchi K (2008) Angew Chem Int Ed 47:9314

    Article  CAS  Google Scholar 

  5. Cocco D, Tola V (2009) Energy 34:2124

    Article  CAS  Google Scholar 

  6. Sholklapper TZ, Kurokawa H, Jacobson CP, Visco SJ, De Jonghe LC (2007) Nano Lett 7:2136

    Article  CAS  Google Scholar 

  7. Muroyama H, Kudo K, Matsui T, Kikuchi R, Eguchi K (2007) Solid State Ionics 178:1512

    Article  CAS  Google Scholar 

  8. Tominaka S, Ohta S, Obata H, Momma T, Osaka T (2008) J Am Chem Soc 130:10456

    Article  CAS  Google Scholar 

  9. Fang B, Chaudhari NK, Kim MS, Kim JH, Yu JS (2009) J Am Chem Soc 131:15330

    Article  CAS  Google Scholar 

  10. Viswanathan B, Indra Neel P, Varadarajan TK (2009) Catal Surv Asia 13:164

    Article  CAS  Google Scholar 

  11. Asamoto M, Yahiro H (2009) Catal Surv Asia 13:221

    Article  CAS  Google Scholar 

  12. Reddy GK, Thrimurthulu G, Reddy BM (2009) Catal Surv Asia 13:237

    Article  CAS  Google Scholar 

  13. Zhou Y, Holme T, Berry J, Ohno TR, Ginley D, Hayre RO (2010) J Phys Chem C 114:506

    Article  CAS  Google Scholar 

  14. Arruda TM, Shyam B, Lawton JS, Ramaswamy N, David E, Budil DE, Ramaker DE, Mukerjee S (2010) J Phys Chem C 114:1028

    Article  CAS  Google Scholar 

  15. Olson TS, Carroll NJ, Petsev DN, Atanassov P (2010) J Phys Chem C 114:4200

    Article  Google Scholar 

  16. Galvita VV, Semin GL, Belyaev VD, Yurieva TM, Sobyanin VA (2001) Appl Catal A Gen 216:85

    Article  CAS  Google Scholar 

  17. Takeishi K, Suzuki H (2004) Appl Catal A Gen 260:111

    Article  CAS  Google Scholar 

  18. Matsumoto T, Nishiguchi T, Kanai H, Utani K, Matsumura Y, Imamura S (2004) Appl Catal A Gen 276:267

    Article  CAS  Google Scholar 

  19. Tanaka Y, Kikuchi R, Takeguchi T, Eguchi K (2005) Appl Catal B Environ 57:211

    Article  CAS  Google Scholar 

  20. Mathew T, Yamada Y, Ueda A, Shioyama H, Kobayashi T (2005) Appl Catal A Gen 286:11

    Article  CAS  Google Scholar 

  21. Zhang Q, Li X, Fujimoto K, Asami K (2005) Appl Catal A Gen 288:169

    Article  CAS  Google Scholar 

  22. Yamada Y, Mathew T, Ueda A, Shioyama H, Kobayashi T (2006) Appl Surf Sci 252:2593

    Article  CAS  Google Scholar 

  23. Nishiguchi T, Oka K, Matsumoto T, Kanai H, Utani K, Imamura S (2006) Appl Catal A Gen 301:66

    Article  CAS  Google Scholar 

  24. Faungnawakij K, Tanaka Y, Shimoda N, Fukunaga T, Kawashima S, Kikuchi R, Eguchi K (2006) Appl Catal A Gen 304:40

    Article  CAS  Google Scholar 

  25. Semelsberger TA, Ott KC, Borup RL, Greene HL (2006) Appl Catal B Environ 65:291

    Article  CAS  Google Scholar 

  26. Kawabata T, Matsuoka H, Shishido T, Li D, Tian Y, Sano T, Takehira K (2006) Appl Catal A Gen 308:82

    Article  CAS  Google Scholar 

  27. Faungnawakij K, Kikuchi R, Eguchi K (2007) J Power Sources 164:73

    Article  CAS  Google Scholar 

  28. Chen D, Bjorgum E, Christensen KO, Holmen A, Lodeng R (2007) Adv Cat 51:351

    Article  CAS  Google Scholar 

  29. Faungnawakij K, Tanaka Y, Shimoda N, Fukunaga T, Kikuchi R, Eguchi K (2007) Appl Catal B Environ 74:144

    Article  CAS  Google Scholar 

  30. Faungnawakij K, Kikuchi R, Matsui T, Fukunaga T, Eguchi K (2007) Appl Catal A Gen 333:114

    Article  CAS  Google Scholar 

  31. Eguchi K, Shimoda N, Faungnawakij K, Matsui T, Kikuchi R, Kawashima S (2008) Appl Catal B Environ 80:156

    Article  CAS  Google Scholar 

  32. Badmaev SD, Snytnikov PV (2008) Int J Hydrogen Energy 33:3026

    Article  CAS  Google Scholar 

  33. Faungnawakij K, Shimoda N, Fukunaga T, Kikuchi R, Eguchi K (2008) Appl Catal A Gen 341:139

    Article  CAS  Google Scholar 

  34. Park SJ, Lee DW, Yu CY, Lee KY, Lee KH (2008) J Memb Sci 318:123

    Article  CAS  Google Scholar 

  35. Nilsson M, Karatzas X, Lindström B, Pettersson LJ (2008) Chem Eng J 142:309

    Article  CAS  Google Scholar 

  36. Song L, Li X, Zheng T (2008) Int J Hydrogen Energy 33:5060

    Article  CAS  Google Scholar 

  37. Fukunaga T, Ryumon N, Shimazu S (2008) Appl Catal A Gen 348:193

    Article  CAS  Google Scholar 

  38. Faungnawakij K, Kikuchi R, Fukunaga T, Eguchi K (2008) Catal Today 138:157

    Article  CAS  Google Scholar 

  39. Solymosi F, Barthos R, Kecskemeti A (2008) Appl Catal A Gen 350:30

    Article  CAS  Google Scholar 

  40. Feng D, Wang Y, Wang D, Wang J (2009) Chem Eng J 146:477

    Article  CAS  Google Scholar 

  41. Faungnawakij K, Kikuchi R, Eguchi K (2009) Scripta Mater 60:655

    Article  CAS  Google Scholar 

  42. Zhang Q, Du F, He X, Liu ZT, Liu ZW, Zhou Y (2009) Catal Today 146:50

    Article  CAS  Google Scholar 

  43. Shimoda N, Faungnawakij K, Kikuchi R, Fukunaga T, Eguchi K (2009) Appl Catal A Gen 365:71

    Article  CAS  Google Scholar 

  44. Faungnawakij K, Shimoda N, Fukunaga T, Kikuchi R, Eguchi K (2009) Appl Catal B Environ 92:341

    Article  CAS  Google Scholar 

  45. Faungnawakij K, Fukunaga T, Kikuchi R, Eguchi K (2009) J Phys Chem C 113:18455

    Article  CAS  Google Scholar 

  46. Ledesma C, Llorca J (2009) Chem Eng J 154:281

    Article  CAS  Google Scholar 

  47. Shimoda N, Faungnawakij K, Kikuchi R, Fukunaga T, Eguchi K (2010) Appl Catal A Gen 378:234

    Article  CAS  Google Scholar 

  48. Kudo S, Maki T, Miura K, Mae K (2010) Carbon 48:1186

    Article  CAS  Google Scholar 

  49. Wang X, Pan X, Lin R, Kou S, Zou W, Ma JX (2010) Inter J Hydrogen Energy 35:4060

    Article  CAS  Google Scholar 

  50. Faungnawakij K, Shimoda N, Viriya-empikul N, Kikuchi R, Eguchi K (2010) Appl Catal B Environ 97:21

    Article  CAS  Google Scholar 

  51. Faungnawakij K, Viriya-empikul N (2010) Appl Catal A Gen 382:21

    Article  CAS  Google Scholar 

  52. Yun JS, Bazardorj SE, Ihm SK (2009) J Chem Eng Japan 42:s180

    Article  Google Scholar 

  53. Yun JS, Bazardorj SE, Ihm SK (2009) J Chem Eng Japan 42:s212

    Article  Google Scholar 

  54. Khom-in J, Praserthdam P, Panpranot J, Mekasuwandumrong O (2008) Catal Commun 9:1955

    Article  CAS  Google Scholar 

  55. Zhu Y, Wang S, Ge X, Liu Q, Luo Z, Cen K (2010) Fuel Process Technol 91:424

    Article  CAS  Google Scholar 

  56. Li Y, Wang T, Yin X, Wu C, Ma L, Li H, Sun L (2009) Fuel 88:2181

    Article  CAS  Google Scholar 

  57. Qi C, Amphlett JC, Peppley BA (2009) Catal Surv Asia 13:16

    Article  CAS  Google Scholar 

  58. Ramos FS, Duarte de Farias AM, Borges LEP, Monteiro JL, Fraga MA, Sousa-Aguiar EF, Appel LG (2005) Catal Today 101:39

    Article  CAS  Google Scholar 

  59. Kiovsky JR, Goyette WJ, Notermann TM (1978) J Catal 52:25

    Article  CAS  Google Scholar 

  60. Vishwanathan V, Jun KW, Kim JW, Roh HS (2004) Appl Catal A Gen 276:251

    Article  CAS  Google Scholar 

  61. Hernandez J, Wrschka P, Oehrlein GS (2001) J Electrochem Soc 48:389

    Article  Google Scholar 

  62. Takahashi K, Takezawa N, Kobayashi H (1982) Appl Catal 2:363

    Article  CAS  Google Scholar 

  63. Nakamura J, Uchijima T, Kanai Y, Fujitani T (1996) Catal Today 28:223

    Article  CAS  Google Scholar 

  64. Kulkarni GU, Rao CNR (2003) Top Catal 22:183

    Article  CAS  Google Scholar 

  65. Jiang CJ, Trimm DL, Wainwright MS (1993) Appl Catal A Gen 97:145

    Article  CAS  Google Scholar 

  66. Choi Y, Stenger SG (2002) Appl Catal B Environ 38:259

    Article  CAS  Google Scholar 

  67. Szizybalski A, Girgsdies F, Rabis A, Wang Y, Niederberger M, Ressler T (2005) J Catal 233:297

    Article  CAS  Google Scholar 

  68. Natesakhawat S, Watson RB, Wang X, Ozkan US (2005) J Catal 234:496

    Article  CAS  Google Scholar 

  69. Laosiripojana N, Assabumrungrat S (2005) Appl Catal B Environ 60:107

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kajornsak Faungnawakij.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Faungnawakij, K., Eguchi, K. Dimethyl Ether—Reforming Catalysts for Hydrogen Production. Catal Surv Asia 15, 12–24 (2011). https://doi.org/10.1007/s10563-010-9103-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10563-010-9103-7

Keywords

Navigation