Skip to main content
Log in

Syndiospecific Styrene Polymerization and Ethylene/Styrene Copolymerization Using Half-Titanocenes: Ligand Effects and Some New Mechanistic Aspects

  • Published:
Catalysis Surveys from Asia Aims and scope Submit manuscript

Abstract

Ethylene/styrene copolymerization catalyzed by half-titanocenes [Cp′TiX3 (Cp′ = cyclopentadienyl; X = halogen, alkyl etc.), linked half-titanocenes, and modified half-titanocenes expressed as Cp′TiX2(Y) (Y = anionic donor ligand)] have been reviewed. Results in the syndiospecific styrene polymerization using Cp′TiX2(Y)–MAO catalysts have also been summarized. The activity and molecular weight in the resultant (co)polymer (and styrene incorporation) are highly affected by ligand (Cp′ and Y). It has been suggested that the cationic Ti(IV) plays a role in the copolymerization whereas the neutral Ti(III) plays a role in the homopolymerization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Scheme 2
Scheme 3
Scheme 4
Scheme 5
Scheme 6
Scheme 7
Fig. 2
Scheme 8
Fig. 3
Fig. 4
Scheme 9
Scheme 10

Similar content being viewed by others

Notes

  1. These procedures are described in the Ref. [63] (Supporting Information) and [64].

  2. Styrene contents in the copolymers as determined by GPC/FT-IR may be somewhat different from those estimated by 1H NMR spectra due to the standard samples in the calibration curve for the analysis of styrene contents chosen for these analyses [6266].

  3. In this catalyst system with Cp*TiMe2(μ-Me)B(C6F5)3 generated from Cp*TiMe3 and B(C6F5)3, styrene polymerization took place in both cationic and coordination insertion manners, to give atactic polystyrene and syndiotactic polystyrene, respectively. The cationic polymerization of isobutene also took place, and 1-hexene polymerization afforded polymer with a broad molecular weight distribution. Since the styrene homopolymerization also took place only with borate, MAO in a cationic manner, it might be thus difficult to estimate the actual catalytic activity with titanium catalyst.

  4. According to the described experimental procedures (including the results regarding T g values of the resultant polymers) [68], it is not yet clear whether or not the styrene contents reported here may include atactic/syndiotactic polystyrene. The M w/M n values in certain polymerization runs also seemed somewhat broad.

  5. Related to this fact, we reported (in the Supporting Information in the reference 62) that the activity with a series of (1,3-Me2C5H3)TiCl2(OAr)–MAO catalyst systems (at 25 °C) increased in the order: OAr = O-2,6-iPr2C6H3 >O-2,6-Me2C6H3 >O-3,5-Me2C6H3. Although the M w value was not affected by the aryloxide ligand employed, the molecular weight distribution became broad especially when (1,3-Me2C5H3)TiCl2(O-3,5-Me2C6H3) was used as the catalyst precursor.

  6. According to their DFT (B3LYP/3-21G*) calculation [34, 35], the syndiospecific polymerization takes place exclusively, and the primary (1,2-insertion) insertion does not occur because the coordination of the monomer is not stable, and stereo irregular insertion is difficult to occur because of the steric hindrance of Cp′ ligand, even if neutral Ti(III) species, Cp′Ti(R)(Y)(styrene) (Y = anionic donor ligand, R = alkyl, polymer chain), plays a role as the catalytically active species for syndiospecific styrene polymerization. This is also because the polymerization took place with chain-end control manner, and inserted monomer weakly coordinates to the Ti metal center that would control the stereospecificity. In addition, Ti(III) is preferable active site, and styrene coordinatesd in both vinyl and phenyl group seems hard to activate mononer in case of cationic species [both Ti(III) and Ti(IV)].

  7. Tomotsu et al. reported that the catalytic activity decreased upon the addition of AlMe3 for styrene polymerization by Cp*Ti(OMe)3–MAO catalyst system [4042]. They also reported that the M w value decreased upon the addition of alkylaluminum, especially effect of AliBu3 addition toward the M w value was explored [40], although the experimental details were not seen. These results also assume that dominant chain-transfer in the styrene polymerization by the Cp* analogue would be the chain-transfer to aluminum.

References

  1. Mason AF, Coates GW (2003) In: Matyjaszewski K, Gnanou Y, Leibler L (eds) Macromolecular Engineering, vol 1. Wiley-VCH, Weinheim, Germany, p 217

    Google Scholar 

  2. Brintzinger HH, Fischer D, Mülhaupt R, Rieger B, Waymouth RM (1995) Angew Chem Int Ed Engl 34:1143

    Article  CAS  Google Scholar 

  3. Kaminsky W (1996) Macromol Chem Phys 197:3903

    Article  Google Scholar 

  4. Kaminsky W, Arndt M (1997) Adv Polym Sci 127:143

    Article  CAS  Google Scholar 

  5. Suhm J, Heinemann J, Wörner C, Müller P, Stricker F, Kressler J, Okuda J, Mülhaupt R (1998) Macromol Symp 129:1

    CAS  Google Scholar 

  6. McKnight AL, Waymouth RM (1998) Chem Rev 98:2587

    Article  CAS  Google Scholar 

  7. Cano J, Kunz K (2007) J Organomet Chem 692:4411

    Article  CAS  Google Scholar 

  8. Britovsek GJP, Gibson VC, Wass DF (1999) Angew Chem Int Ed 38:429

    Article  Google Scholar 

  9. Gibson VC, Spitzmesser SK (2003) Chem Rev 103:283

    Article  CAS  Google Scholar 

  10. Bolton PD, Mountford P (2005) Adv Synth Catal 347:355

    Article  CAS  Google Scholar 

  11. Gladysz JA (ed) (2000) Frontiers in metal-catalyzed polymerization (special issue). Chem Rev 100(4)

  12. Ittel SD, Johnson LK, Brookhart M (2000) Chem Rev 100:1169

    Article  CAS  Google Scholar 

  13. Alt HG, Köppl A (2000) Chem Rev 100:1205

    Article  CAS  Google Scholar 

  14. Chen EY-X, Marks TJ (2000) Chem Rev 100:1391

    Article  CAS  Google Scholar 

  15. Alt HG (ed) (2006) Metallocene complexes as catalysts for olefin polymerization (special issue). Coord Chem Rev 250(1–2):1

    Google Scholar 

  16. Milani B, Claver C (eds) (2009) Metal-catalysed polymerisation (special issue). Dalton Trans (41):8769

  17. Coates GW, Hustad PD, Reinartz S (2002) Angew Chem Int Ed 41:2236

    Article  CAS  Google Scholar 

  18. Domski GJ, Rose JM, Coates GW, Bolig AD, Brookhart M (2007) Prog Polym Sci 32:30

    Article  CAS  Google Scholar 

  19. Stephan DW (2005) Organometallics 24:2548

    Article  CAS  Google Scholar 

  20. Nomura K, Liu J, Padmanabhan S, Kitiyanan B (2007) J Mol Catal A 267:1

    Article  CAS  Google Scholar 

  21. Nomura K (2009) Dalton Trans 8811

  22. Ishihara N, Seimiya T, Kuramoto M, Uoi M (1986) Polym Prep Jpn 35:240

    Google Scholar 

  23. Ishihara N, Seimiya T, Kuramoto M, Uoi M (1986) Macromolecules 19:2465

    Article  Google Scholar 

  24. Zambelli A, Longo P, Pellecchia C, Grassi A (1987) Macromolecules 20:2035

    Article  CAS  Google Scholar 

  25. Ishihara N, Seimiya T, Kuramoto M, Uoi M (1988) Macromolecules 21:3356

    Article  CAS  Google Scholar 

  26. Zambelli A, Oliva L, Pellecchia C (1989) Macromolecules 22:2129

    Article  CAS  Google Scholar 

  27. Newman TH, Campbell RE, Malanga MT (1993) Proceedongs of Metcon ‘93, Houston, TX, pp 315–324

  28. Ready TE, Day RO, Chien JCW, Rausch MD (1993) Macromolecules 26:5822

    Article  CAS  Google Scholar 

  29. Tomotsu N, Kuramoto M, Takeuchi M, Maezawa H (1996) Metallocenes 96:211

    Google Scholar 

  30. Chien JCW (1996) Metallocenes 96:223

    Google Scholar 

  31. Kaminsky W, Lenk S, Scholz V, Roesky HW, Herzog A (1997) Macromolecules 30:7647

    Article  CAS  Google Scholar 

  32. Tomotsu N, Shouzaki H, Takeuchi M (1998) Polym Prep Jpn 47:1597

    Google Scholar 

  33. Wu Q, Ye Z, Lin S (1998) Macromol Chem Phys 198:1823

    Article  Google Scholar 

  34. Tomotsu N, Shouzaki H, Aida M, Takeuchi M, Yokota K, Aoyama Y, Ikeuchi S, Inoue T (2002) In: Terano M, Shiono T (eds) Future technology for polyolefin and olefin polymerization catalysis. Technology and Education Publishers, Tokyo, pp 49–54

    Google Scholar 

  35. Tomotsu N, Yokota K, Inoue T, Aoyama Y, Takeuchi M, Shozaki H, Kuramoto M (2003) Abstract in European polymer conference on stereospecific polymerization and stereoregular polymers, Milano, Italy

  36. Grassi A, Lamberti C, Zambelli A, Mingozzi I (1997) Macromolecules 30:1884

    Article  CAS  Google Scholar 

  37. Grassi A, Saccheo S, Zambelli A, Laschi F (1998) Macromolecules 31:5588

    Article  CAS  Google Scholar 

  38. Kawabe M, Murata M, Soga K (1999) Macromol Rapid Commun 20:569

    Article  CAS  Google Scholar 

  39. Kawabe M, Murata M (2001) J Polym Sci A Polym Chem 39:3692

    Article  CAS  Google Scholar 

  40. Tomotsu N, Ishihara N (1997) Catal Surv Jpn 1:97

    Article  Google Scholar 

  41. Tomotsu N, Ishihara N, Newman TH, Malanga MT (1998) J Mol Catal A 128:167

    Article  CAS  Google Scholar 

  42. Tomotsu N, Ishihara N (1999) J Synth Org Chem Jpn 57:450

    CAS  Google Scholar 

  43. Pellechia C, Grassi A (1999) Top Catal 7:125

    Article  Google Scholar 

  44. Scheirs J, Kaminsky W (eds) (2000) Metallocene-based polyolefins, vol 2. Wiley, Chichester, p 568

    Google Scholar 

  45. Schellenberg J (2009) Prog Polym Sci 34:688

    Article  CAS  Google Scholar 

  46. Schellenberg J (2010) (ed) Syndiotactic polystyrene––synthesis, characterization, processing, and applications. Wiley-VCH, New Jersey, USA

  47. Soga K, Lee DH, Yanagihara H (1988) Polym Bull 20:237

    Article  CAS  Google Scholar 

  48. Mani P, Burns CM (1991) Macromolecules 24:5476

    Article  CAS  Google Scholar 

  49. Cheung YW, Guest MJ (2003) In: Scheirs J, Priddy DB (eds) Modern styrenic polymers: polystyrenes and styrenic copolymers. John Wiley & Sons Ltd, Chichester, p 605

    Chapter  Google Scholar 

  50. Guest MJ, Cheung YW, Diehl CF, Hoenig SM (2000) In: Scheirs J, Kaminsky W (eds) Metallocene-based polyolefins, vol 2. John Wiley & Sons Ltd, Chichester, p 271

    Google Scholar 

  51. Braunschweig H, Breitling FM (2006) Coord Chem Rev 250:2691

    Article  CAS  Google Scholar 

  52. Rodrigues A-S, Carpentier J-F (2008) Coord Chem Rev 252:2137

    Article  CAS  Google Scholar 

  53. Nomura K (2010) In: Schellenberg J (ed) Syndiotactic polystyrene––synthesis, characterization, processing, and applications. Wiley-VCH, New Jersey, USA, p 60

    Google Scholar 

  54. Chen H, Guest MJ, Chum S, Hiltner A, Baer E (1998) J Appl Polym Sci 70:109

    Article  CAS  Google Scholar 

  55. Chum PS, Kruper WJ, Guest MJ (2000) Adv Mater 12:1759

    Article  CAS  Google Scholar 

  56. Cheung YW, Guest MJ (2000) J Polym Sci B Polym Phys 38:2976

    Article  CAS  Google Scholar 

  57. Longo P, Grassi A, Oliva L (1990) Makromol Chem 191:2387

    Article  CAS  Google Scholar 

  58. Pellecchia C, Pappalardo D, D′Arco M, Zambell A (1996) Macromolecules 29:1158

    Article  CAS  Google Scholar 

  59. Oliva L, Mazza S, Longo P (1996) Macromol Chem Phys 197:3115

    Article  CAS  Google Scholar 

  60. Xu G, Lin S (1997) Macromolecules 30:685

    Article  CAS  Google Scholar 

  61. Lee DH, Yoon KB, Kim HJ, Woo SS, Noh SK (1998) J Appl Polym Sci 67:2187

    Article  CAS  Google Scholar 

  62. Nomura K, Komatsu T, Imanishi Y (2000) Macromolecules 33:8122

    Article  CAS  Google Scholar 

  63. Nomura K, Okumura H, Komatsu T, Naga N (2002) Macromolecules 34:5388

    Article  Google Scholar 

  64. Nomura K, Zhang H, Byun D-J (2008) J Polym Sci A Polym Chem 46:4162

    Article  CAS  Google Scholar 

  65. Zhang H, Nomura K (2005) J Am Chem Soc 127:9364

    Article  CAS  Google Scholar 

  66. Zhang H, Nomura K (2006) Macromolecules 39:5266

    Article  CAS  Google Scholar 

  67. Kretschmer WP, Dijkhuis C, Meetsma A, Hessen B, Teuben JH (2002) Chem Commun 608

  68. Wang Q, Lam P, Zhang Z, Yamashita G, Fan L (2003) US 6579961 B1

  69. Stevens JC, Timmers FJ, Wilson DR, Schmidt GF, Nickias PN, Rosen RK, Knight GW, Lai SY (1991) EP 0416815 A2

  70. Timmers FJ (2003) USP 6670432 B1

  71. Arriola DJ, Bokota M, Campbell RE Jr, Klosin J, LaPointe RE, Redwine OD, Shankar RB, Timmers FJ, Abboud KA (2007) J Am Chem Soc 129:7065

    Article  CAS  Google Scholar 

  72. Sernetz FG, Mülhaupt R, Waymouth RM (1996) Macromol Chem Phys 197:1071

    Article  CAS  Google Scholar 

  73. Sernetz FG, Mülhaupt R, Amor F, Eberle T, Okuda J (1997) J Polym Sci A Polym Chem 35:1571

    Article  CAS  Google Scholar 

  74. Sukhova TA, Panin AN, Babkina ON, Bravaya NM (1999) J Polym Sci A Polym Chem 37:1083

    Article  CAS  Google Scholar 

  75. Xu G (1998) Macromolecules 31:2395

    Article  CAS  Google Scholar 

  76. Kamigaito M, Lal TK, Waymouth RM (2000) J Polym Sci A Polym Chem 38:4649

    Article  CAS  Google Scholar 

  77. Nomura K, Okumura H, Komatsu T, Naga N, Imanishi Y (2002) J Mol Catal A 190:225

    Article  CAS  Google Scholar 

  78. Guo N, Li L, Marks TJ (2004) J Am Chem Soc 126:6542

    Article  CAS  Google Scholar 

  79. Li H, Marks TJ (2006) Proc Natl Acad Sci USA 103:15295

    Article  CAS  Google Scholar 

  80. Guo N, Stern CL, Marks TJ (2008) J Am Chem Soc 130:2246

    Article  CAS  Google Scholar 

  81. Oliva L, Caporaso L, Pellecchia C, Zambelli A (1995) Macromolecules 28:4665

    Article  CAS  Google Scholar 

  82. Caporaso L, Izzo L, Oliva L (1999) Macromolecules 32:7329

    Article  CAS  Google Scholar 

  83. Caporaso L, Izzo L, Zappile S, Oliva L (2000) Macromolecules 33:7275

    Article  CAS  Google Scholar 

  84. Arai T, Ohtsu T, Suzuki S (1998) Macromol Rapid Commun 19:327

    Article  CAS  Google Scholar 

  85. Arai T, Suzuki S, Ohtsu T (2000) Arjunan P (ed) In: Olefin polymerization: emerging frontiers, ACS symposium series 749, American Chemical Society, Washington, DC, p 66

  86. Arai T, Ohtsu T, Nakajima M (1999) Polym Prep Jpn 48:1666

    Google Scholar 

  87. Izzo L, Napoli M, Oliva L (2003) Macromolecules 36:9340

    Article  CAS  Google Scholar 

  88. Zhang H, Byun D-J, Nomura K (2007) Dalton Trans 1802

  89. Housaki T, Satoh K, Nishikida K, Morimoto M (1988) Makromol Chem Rapid Commun 9:525

    Google Scholar 

  90. Aaltonen P, Seppälä J (1994) Eur Polym J 30:683

    Article  CAS  Google Scholar 

  91. Pellecchia C, Mazzeo M, Gruer G-J (1999) Macromol Rapid Commun 20:337

    Article  CAS  Google Scholar 

  92. Pellecchia C, Pappalardo D, Oliva L, Mazzeo M, Gruter G-J (2000) Macromolecules 33:2807

    Article  CAS  Google Scholar 

  93. Ewart SW, Baird MC (1999) Marks TJ, Stevens JC (eds) In: Topics in catalysis 7, p 1

  94. Baird MC (2000) Chem Rev 100:1471

    Article  CAS  Google Scholar 

  95. Gillis DJ, Tudoret M-J, Baird MC (1993) J Am Chem Soc 115:2543

    Article  CAS  Google Scholar 

  96. Quyoum R, Wang Q, Tudoret M-J, Baird MC (1994) J Am Chem Soc 116:6435

    Article  CAS  Google Scholar 

  97. Wang Q, Quyoum R, Gillis DJ, Tudoret M-J, Jeremic D, Hunter BK, Baird MC (1996) Organometallics 15:693

    Article  CAS  Google Scholar 

  98. Nomura K, Naga N, Miki M, Yanagi K, Imai A (1998) Organometallics 17:2152

    Article  CAS  Google Scholar 

  99. Nomura K, Naga N, Miki M, Yanagi K (1998) Macromolecules 31:7588

    Article  CAS  Google Scholar 

  100. Grassi A, Zambelli A, Laschi F (1996) Organometallics 15:480

    Article  CAS  Google Scholar 

  101. Minieri G, Corradini P, Guerra G, Zambelli A, Cavallo L (2001) Macromolecules 34:5379

    Article  CAS  Google Scholar 

  102. Mahanthappa MK, Waymouth RM (2001) J Am Chem Soc 123:12093

    Article  CAS  Google Scholar 

  103. Byun D-J, Fudo A, Tanaka A, Fujiki M, Nomura K (2004) Macromolecules 37:5520

    Article  CAS  Google Scholar 

  104. Nomura K, Fujita K, Fujiki M (2004) Catal Commun 5:413

    Article  CAS  Google Scholar 

  105. Nomura K, Fujii K (2003) Science and technology in catalysis 2002, 121

  106. Nomura K, Fujii K (2003) Macromolecules 36:2633

    Article  CAS  Google Scholar 

  107. Nomura K, Tanaka A, Katao S (2006) J Mol Catal A 254:197

    Article  CAS  Google Scholar 

  108. Zhang H, Katao S, Nomura K, Huang J (2007) Organometallics 26:5967

    Article  CAS  Google Scholar 

  109. Tomotsu N (1993) Polym Prep Jpn 42:226

    Google Scholar 

Download references

Acknowledgements

K.N. expresses his heartfelt thanks to former group members who contributed this project as coauthors, and Dr. Norio Tomotsu (Idemistu Kosan, Co. Ltd.) for helpful discussions especially for mechanistic considerations. This research was partly supported by Grant-in-Aid for Scientific Research (B) from the Japan Society for the Promotion of Science (JSPS, No. 18350055, No. 21350054).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kotohiro Nomura.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nomura, K. Syndiospecific Styrene Polymerization and Ethylene/Styrene Copolymerization Using Half-Titanocenes: Ligand Effects and Some New Mechanistic Aspects. Catal Surv Asia 14, 33–49 (2010). https://doi.org/10.1007/s10563-010-9086-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10563-010-9086-4

Keywords

Navigation