Skip to main content
Log in

Development of a Regenerable Fe-Ag/CNF Catalyst for the Oxidation of Organics-Laden Wastewater

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The present study introduces an activated carbon bead-supported regenerable bimetal (Fe-Ag) catalyst for the catalytic wet air oxidation (cWAO) of organics in an industrial wastewater (chemical oxygen demand/COD ~ 120000 mg/L). The catalytic oxidation reaction is performed at 27 bar and 230 °C in a trickle bed reactor. The Fe-Ag nanoparticles-modified carbon nanofibers enhance the exposure of the bimetals to the aqueous organics during oxidation. The spent cWAO catalyst is regenerated through simple solvent-washing and H2-reduction steps. The SEM, XRD, Raman, and XPS spectroscopic results indicate that the physicochemical properties of the fresh catalyst, including the materials specific surface area are retained in the regenerated catalyst. The regenerated catalyst shows approximately the same efficiency (~ 99% COD reduction) as that of the fresh catalyst in three consecutive oxidation-regeneration cycles. The bimetal catalyst developed in this study for the treatment of aqueous organics is cost-effective and scalable.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Garg S, Chowdhury ZZ, Faisal ANM, Rumjit NP, Thomas P (2022) Impact of industrial wastewater on environment and human health. Environ Sci Eng 197–209. https://doi.org/10.1007/978-3-030-83811-9_10

  2. Bahri M, Mahdavi A, Mirzaei A et al (2018) Integrated oxidation process and biological treatment for highly concentrated petrochemical effluents: A review. Chem Eng Process - Process Intensif 125:183–196. https://doi.org/10.1016/j.cep.2018.02.002

  3. Berkün Olgun Ö, Palas B, Atalay S, Ersöz G (2021) Photocatalytic oxidation and catalytic wet air oxidation of real pharmaceutical wastewater in the presence of Fe and LaFeO3 doped activated carbon catalysts. Chem Eng Res Des 171:421–432. https://doi.org/10.1016/j.cherd.2021.05.017

    Article  CAS  Google Scholar 

  4. Gupta P, Pandey K, Verma N (2022) Augmented complete mineralization of glyphosate in wastewater via microbial degradation post CWAO over supported Fe-CNF. Chem Eng J 428:132008. https://doi.org/10.1016/j.cej.2021.132008

    Article  CAS  Google Scholar 

  5. Pophali A, Singh S, Verma N (2020) Simultaneous hydrogen generation and COD reduction in a photoanode-based microbial electrolysis cell. Int J Hydrogen Energy 45:25985–25995. https://doi.org/10.1016/j.ijhydene.2020.01.053

    Article  CAS  Google Scholar 

  6. Noori MT, Verma N (2019) Cobalt - Iron phthalocyanine supported on carbide - Derived carbon as an excellent oxygen reduction reaction catalyst for microbial fuel cells. Electrochim Acta 298:70–79. https://doi.org/10.1016/j.electacta.2018.12.056

    Article  CAS  Google Scholar 

  7. Dükkanci M, Gündüz G (2009) Catalytic wet air oxidation of butyric acid and maleic acid solutions over noble metal catalysts prepared on TiO2. Catal Commun 10:913–919. https://doi.org/10.1016/j.catcom.2008.12.022

    Article  CAS  Google Scholar 

  8. Tran ND, Besson M, Descorme C et al (2011) Influence of the pretreatment conditions on the performances of CeO2-supported gold catalysts in the catalytic wet air oxidation of carboxylic acids. Catal Commun 16:98–102. https://doi.org/10.1016/j.catcom.2011.09.014

    Article  CAS  Google Scholar 

  9. Sushma KM, Saroha AK (2018) Performance of various catalysts on treatment of refractory pollutants in industrial wastewater by catalytic wet air oxidation: A review. J Environ Manage 228:169–188

    Article  CAS  PubMed  Google Scholar 

  10. Posada D, Betancourt P, Liendo F, Brito JL (2006) Catalytic wet air oxidation of aqueous solutions of substituted phenols. Catal Lett 106:81–88. https://doi.org/10.1007/s10562-005-9195-2

    Article  CAS  Google Scholar 

  11. Rocha RP, Pereira MFR, Figueiredo JL (2020) Metal-free carbon materials as catalysts for wet air oxidation. Catal Today 356:189–196

    Article  CAS  Google Scholar 

  12. Yang S, Zhu W, Li X et al (2007) Multi-walled carbon nanotubes (MWNTs) as an efficient catalyst for catalytic wet air oxidation of phenol. Catal Commun 8:2059–2063. https://doi.org/10.1016/j.catcom.2007.04.015

    Article  CAS  Google Scholar 

  13. Sánchez D, Toniolo FS, Schmal M (2023) The Performance of Cu and Ce Oxides Nanoparticles on Functionalized MWCNTs Walls for the CO Preferential Oxidation. Catal Lett. https://doi.org/10.1007/s10562-023-04421-z

    Article  Google Scholar 

  14. Rocha RP, Gonçalves AG, Pastrana-Martínez LM et al (2015) Nitrogen-doped graphene-based materials for advanced oxidation processes. Catal Today 249:192–198. https://doi.org/10.1016/j.cattod.2014.10.046

    Article  CAS  Google Scholar 

  15. Cao Y, Li B, Zhong G et al (2018) Catalytic wet air oxidation of phenol over carbon nanotubes: Synergistic effect of carboxyl groups and edge carbons. Carbon N Y 133:464–473. https://doi.org/10.1016/j.carbon.2018.03.045

    Article  CAS  Google Scholar 

  16. Yadav A, Teja AK, Verma N (2016) Removal of phenol from water by catalytic wet air oxidation using carbon bead-Supported iron nanoparticle-Containing carbon nanofibers in an especially configured reactor. J Environ Chem Eng 4:1504–1513. https://doi.org/10.1016/j.jece.2016.02.021

    Article  CAS  Google Scholar 

  17. Yadav A, Verma N (2018) Carbon bead-supported copper-dispersed carbon nanofibers: An efficient catalyst for wet air oxidation of industrial wastewater in a recycle flow reactor. J Ind Eng Chem 67:448–460. https://doi.org/10.1016/j.jiec.2018.07.019

    Article  CAS  Google Scholar 

  18. Gupta P, Verma N (2021) Evaluation of degradation and mineralization of glyphosate pollutant in wastewater using catalytic wet air oxidation over Fe-dispersed carbon nanofibrous beads. Chem Eng J 417:128029. https://doi.org/10.1016/j.cej.2020.128029

    Article  CAS  Google Scholar 

  19. Kumar A, Verma N (2018) Wet air oxidation of aqueous dichlorvos pesticide over catalytic copper-carbon nanofiberous beads. Chem Eng J 351:428–440. https://doi.org/10.1016/j.cej.2018.06.058

    Article  CAS  Google Scholar 

  20. Kumar A, Verma N (2020) Cu-Fe bimetal-carbon nanofiberous catalytic beads for enhanced oxidation of dichlorvos pesticide and simultaneous reduction of Cr(VI) in wet air. Catal Today 348:194–202. https://doi.org/10.1016/j.cattod.2019.08.025

    Article  CAS  Google Scholar 

  21. Vallet A, Ovejero G, Rodríguez A et al (2013) Ni/MgAlO regeneration for catalytic wet air oxidation of an azo-dye in trickle-bed reaction. J Hazard Mater 244–245:46–53. https://doi.org/10.1016/j.jhazmat.2012.11.019

    Article  CAS  PubMed  Google Scholar 

  22. Chen IP, Lin SS, Wang CH, Chang SH (2007) CWAO of phenol using CeO2/γ-Al2O3 with promoter-Effectiveness of promoter addition and catalyst regeneration. Chemosphere 66:172–178. https://doi.org/10.1016/j.chemosphere.2006.05.023

    Article  CAS  PubMed  Google Scholar 

  23. Quesada-Peñate I, Julcour-Lebigue C, Jáuregui-Haza UJ et al (2012) Degradation of paracetamol by catalytic wet air oxidation and sequential adsorption - Catalytic wet air oxidation on activated carbons. J Hazard Mater 221–222:131–138. https://doi.org/10.1016/j.jhazmat.2012.04.021

    Article  CAS  PubMed  Google Scholar 

  24. Keav S, Martin A, Barbier J, Duprez D (2010) Deactivation and reactivation of noble metal catalysts tested in the Catalytic Wet Air Oxidation of phenol. Catal Today 151:143–147. https://doi.org/10.1016/j.cattod.2010.01.025

    Article  CAS  Google Scholar 

  25. Basak K, Mourik A Von, Verma N (2021) US 11014084, (Shell Oil Company)

  26. Mourik A Von, Basak K, Verma N (2021) US 11168011, (Shell Oil Company)

  27. George JK, Bhagat A, Bhaduri B, Verma N (2023) Carbon Nanofiber-Bridged Carbon Nitride-Fe2O3 Photocatalyst: Hydrogen Generation and Degradation of Aqueous Organics. Catal Lett 153:419–431. https://doi.org/10.1007/s10562-022-03985-6

    Article  CAS  Google Scholar 

  28. Ali H, Verma N (2022) A Hybrid UV-Vis Spectroelectrochemical Approach for Measuring Folic Acid using a Novel Ni-CNF/ITO Electrode. Electrochim Acta 428:140920. https://doi.org/10.1016/j.electacta.2022.140920

    Article  CAS  Google Scholar 

  29. Prajapati YN, Verma N (2018) Fixed bed adsorptive desulfurization of thiophene over Cu/Ni-dispersed carbon nanofiber. Fuel 216:381–389. https://doi.org/10.1016/j.fuel.2017.11.132

  30. Zhang X, Sun H, Tan S et al (2019) Hydrothermal synthesis of Ag nanoparticles on the nanocellulose and their antibacterial study. Inorg Chem Commun 100:44–50. https://doi.org/10.1016/J.INOCHE.2018.12.012

    Article  CAS  Google Scholar 

  31. Zhou JH, Sui ZJ, Zhu J et al (2007) Characterization of surface oxygen complexes on carbon nanofibers by TPD, XPS and FT-IR. Carbon N Y 45:785–796. https://doi.org/10.1016/j.carbon.2006.11.019

    Article  CAS  Google Scholar 

  32. Prieto P, Nistor V, Nouneh K et al (2012) XPS study of silver, nickel and bimetallic silver-nickel nanoparticles prepared by seed-mediated growth. Appl Surf Sci 258:8807–8813. https://doi.org/10.1016/j.apsusc.2012.05.095

    Article  CAS  Google Scholar 

  33. Ali H, Verma N (2022) A Cu–CNF–rGO-functionalized carbon film indicated as a versatile electrode for sensing of biomarkers using electropolymerized recognition elements. J Mater Sci 57:6345–6360. https://doi.org/10.1007/s10853-022-07029-7

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Shell Technology Centre Bangalore, India for the research grant (Shell/ChE/2018124) and providing the industrial wastewater samples. The authors also acknowledge the Center for Environmental Science and Engineering, IIT Kanpur for carrying out the research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nishith Verma.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, H., Gupta, R., Basak, K. et al. Development of a Regenerable Fe-Ag/CNF Catalyst for the Oxidation of Organics-Laden Wastewater. Catal Lett (2024). https://doi.org/10.1007/s10562-024-04711-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10562-024-04711-0

Keywords

Navigation