Skip to main content
Log in

Efficient and Stable Co-B Catalyst Supported on Natural Zeolite for Hydrogen Generation from Hydrolysis of Alkaline NaBH4 Solution

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

In this study, a natural zeolite supported Co-B catalyst (Co-B/Zeolite) with a Co content of 10 wt.% was prepared by impregnation and chemical reduction method to release hydrogen gas from an alkaline sodium borohydride (NaBH4) solution. The synthesized catalyst was characterized with various characterization techniques, including X-ray diffraction (XRD), X-ray fluorescence (XRF), inductively coupled plasma mass spectroscopy (ICP-MS), Brunauer–Emmett–Teller (BET), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), Fourier transform infrared (FTIR), and X-ray photoelectron spectroscopy (XPS), etc. It was found that the BET specific surface area of Co-B/Zeolite (26.03 m2 g−1) was roughly double that of the zeolite (13.12 m2 g−1). The Co ratio in the catalyst was found to be 12.02 wt.% by EDX analysis. ICP-MS examination of the catalyst revealed a B/Co atomic ratio of 0.64. No peaks associated with Co-B were observed in the XRD pattern of the catalyst, indicating the amorphous nature of the component. Parameters that have significant effects on the hydrolysis reaction, such as catalyst amount, sodium hydroxide and sodium borohydride concentrations, and reaction temperature, were investigated. The hydrogen generation rate (HGR) was found to be 1732 mL min−1 gcat−1 in the presence of 100 mg of Co-B/Zeolite in 5 wt.% NaOH and 5 wt.% NaBH4 solution at 50 °C. The experimental results were well fitted to the zero-order kinetic model (k0 = 0.0296–0.1619 mol min−1 gcat−1 for 20–50 °C). The activation energy (Ea) of the catalytic reaction was found to be 44.98 kJ mol−1. Meanwhile, the reusability evaluations showed that the catalyst preserves high stability and can still sustain 73% of its initial activity after 5 catalytic cycles.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Fan MQ, Xu F, Sun LX (2007) Studies on hydrogen generation characteristics of hydrolysis of the ball milling Al-based materials in pure water. Int J Hydrogen Energy 32:2809–2815

    Article  CAS  Google Scholar 

  2. Liu CH, Chen BH, Hsueh CL, Ku JR, Jeng MS, Tsau F (2009) Hydrogen generation from hydrolysis of sodium borohydride using Ni-Ru nanocomposite as catalysts. Int J Hydrogen Energy 34:2153–2163

    Article  CAS  Google Scholar 

  3. Zahmakıran M, Özkar S (2006) Water dispersible acetate stabilized ruthenium(0) nanoclusters as catalyst for hydrogen generation from the hydrolysis of sodium borohydride. J Mol Cata A-Chem 258:95–103

    Article  Google Scholar 

  4. Xu D, Zhang X, Zhao X, Dai P, Wang C, Gao J, Liu X (2019) Stability and kinetic studies of MOF-derived carbon-confined ultrafine Co catalyst for sodium borohydride hydrolysis. Int J Energy Res 43:3702–3710

    Article  CAS  Google Scholar 

  5. Selvitepe N, Balbay A, Saka C (2019) Optimisation of sepiolite clay with phosphoric acid treatment as support material for CoB catalyst and application to produce hydrogen from the NaBH4 hydrolysis. Int J Hydrogen Energy 44:16387–16399

    Article  CAS  Google Scholar 

  6. Ali F, Khan SB, Asiri AM (2018) Enhanced H2 generation from NaBH4 hydrolysis and methanolysis by cellulose micro-fibrous cottons as metal templated catalyst. Int J Hydrogen Energy 43:6539–6550

    Article  CAS  Google Scholar 

  7. Wee JH, Lee KY, Kim SH (2006) Sodium borohydride as the hydrogen supplier for proton Exchange membrane fuel cell systems. Fuel Process Technol 87:811–819

    Article  CAS  Google Scholar 

  8. Züttel A (2003) Materials for hydrogen storage. Mater Today 9:24–33

    Article  Google Scholar 

  9. Lang C, Jia Y, Yao X (2020) Recent advances in liquid-phase chemical hydrogen storage. Energy Stor Mater 26:290–312

    Google Scholar 

  10. Liu Z, Guo B, Chan SH, Tang EH, Hong L (2008) Pt and Ru dispersed on LiCoO2 for hydrogen generation from sodium borohydride solutions. J Power Sources 176:306–311

    Article  CAS  Google Scholar 

  11. Singh SK, Iizuka Y, Xu Q (2011) Nickel-palladium nanoparticle catalyzed hydrogen generation from hydrous hydrazine for chemical hydrogen storage. Int J Hydrogen Energy 36:11794–11801

    Article  CAS  Google Scholar 

  12. Larichev YV, Netskina OV, Komova OV, Simagina VI (2010) Comparative XPS study of Rh/Al2O3 and Rh/TiO2 as catalysts for NaBH4 hydrolysis. Int J Hydrogen Energy 35:6501–6507

    Article  CAS  Google Scholar 

  13. Tuan DD, Lin KYA (2018) Ruthenium supported on ZIF-67 as an enhanced catalyst for hydrogen generation from hydrolysis of sodium borohydride. Chem Eng J 35:148–155

    Google Scholar 

  14. Amendola SC, Sharp-Goldman SL, Janjua MS, Kelly MT, Petillo PJ, Binder M (2000) An ultrasafe hydrogen generator: aqueous, alkaline borohydride solutions and Ru catalyst. J Power Sources 85:186–189

    Article  CAS  Google Scholar 

  15. Fiorenza R, Scire S, Venezia AM (2018) Carbon supported bimetallic Ru-Co catalysts for H2 production through NaBH4 and NH3BH3 hydrolysis. Int J Energy Res 42:1183–1195

    Article  CAS  Google Scholar 

  16. Zhang J, Li Y, Yang L, Zhang F, Li R, Dong H (2022) Ruthenium nanosheets decorated cobalt foam for controllable hydrogen production from sodium borohydride hydrolysis. Catal Lett 152:1386–1391

    Article  CAS  Google Scholar 

  17. Demirci UB, Akdim O, Hannauer J, Chamoun R, Miele P (2010) Cobalt, a reactive metal in releasing hydrogen from sodium borohydride by hydrolysis: A short review and a research perspective. Sci China Chem 53:1870–1879

    Article  CAS  Google Scholar 

  18. Li K, Ma M, Xie L, Yao Y, Kong R, Du G, Asiri AM, Sun X (2017) Monolithically integrated NiCoP nanosheet array on Ti mesh: An efficient and reusable catalyst in NaBH4 alkaline media toward on-demand hydrogen generation. Int J Hydrogen Energy 42:19028–19034

    Article  CAS  Google Scholar 

  19. Şahin Ö, Kilinç D, Saka C (2015) Hydrogen production by catalytic hydrolysis of sodium borohydride with a bimetallic solid-state Co-Fe complex catalyst. Sep Sci Technol 50:2051–2059

    Google Scholar 

  20. Saka C, Şahin Ö, Demir H, Karabulut A, Sarikaya A (2015) Hydrogen generation from sodium borohydride hydrolysis with a Cu-Co-based catalyst: A kinetic study. Energy Source Part A 37:956–964

    Article  CAS  Google Scholar 

  21. Patil KN, Prasad D, Bhanushali JT, Kim H, Atar AB, Nagaraja BM, Jadhav AH (2020) Sustainable hydrogen generation by catalytic hydrolysis of NaBH4 using tailored nanostructured urchin-like CuCo2O4 spinel catalyst. Catal Lett 150:586–604

    Article  CAS  Google Scholar 

  22. Demirci UB, Miele P (2014) Cobalt-based catalysts for the hydrolysis of NaBH4 and NH3BH3. Phys Chem Chem Phys 16:6872–6885

    Article  CAS  PubMed  Google Scholar 

  23. Rakap M, Özkar S (2012) Hydroxyapatite-supported cobalt(0) nanoclusters as efficient and cost-effective catalyst for hydrogen generation from the hydrolysis of both sodium borohydride and ammonia-borane. Catal Today 183:17–25

    Article  CAS  Google Scholar 

  24. Rakap M, Özkar S (2009) Intrazeolite cobalt(0) nanoclusters as low-cost and reusable catalyst for hydrogen generation from the hydrolysis of sodium borohydride. Appl Catal B-Environ 91:21–29

    Article  CAS  Google Scholar 

  25. Zhang H, Feng X, Cheng L, Hou X, Li Y, Han S (2019) Non-noble Co anchored on nanoporous graphene oxide, as an efficient and long-life catalyst for hydrogen generation from sodium borohydride. Colloid Surface A 563:112–119

    Article  CAS  Google Scholar 

  26. Singh PK, Das T (2017) Generation of hydrogen from NaBH4 solution using metal-boride (CoB, FeB, NiB) catalysts. Int J Hydrogen Energy 42:29360–29369

    Article  CAS  Google Scholar 

  27. Liu BH, Li Q (2008) A highly active Co-B catalyst for hydrogen generation from sodium borohydride hydrolysis. Int J Hydrogen Energy 33:7385–7391

    Article  CAS  Google Scholar 

  28. Manna J, Roy B, Vashistha M, Sharma P (2014) Effect of Co+2 /BH4- ratio in the synthesis of Co-B catalysts on sodium borohydride hydrolysis. Int J Hydrogen Energy 39:406–413

    Article  CAS  Google Scholar 

  29. Şahin Ö, Kaya M, İzgi MS, Saka C (2015) The effect of microwave irradiation on a Co-B-based catalyst for hydrogen generation by hydrolysis of NaBH4 solution. Energy Source Part A 37:462–467

    Article  Google Scholar 

  30. Pei Y, Guo P, Qiao M, Li H, Wei S, He H, Fan K (2007) The modification effect of Fe on amorphous CoB alloy catalyst for chemoselective hydrogenation of crotonaldehyde. J Catal 248:303–310

    Article  CAS  Google Scholar 

  31. Krishnan P, Advani SG, Prasad AK (2009) Thin-film CoB catalyst templates for the hydrolysis of NaBH4 solution for hydrogen generation. Appl Cata B-Environ 86:137–144

    Article  CAS  Google Scholar 

  32. Gupta S, Patel N, Fernandes R, Kothari DC, Miotello A (2013) Mesoporous Co-B nanocatalyst for efficient hydrogen production by hydrolysis of sodium borohydride. Int J Hydrogen Energy 38:14685–14692

    Article  CAS  Google Scholar 

  33. Xiang C, Jiang D, She Z, Zou Y, Chu H, Qui S, Zhang H, Xu F, Tang C, Sun L (2015) Hydrogen generation by hydrolysis of alkaline sodium borohydride using a cobalt-zinc-boron/graphene nanocomposite treated with sodium hydroxide. Int J Hydrogen Energy 40:4111–4118

    Article  CAS  Google Scholar 

  34. Saka C, Kaya M, Bekiroğullari M (2020) Spirulina platensis microalgae strain modified with phosphoric acid as a novel support material for Co-B catalysts: Its application to hydrogen production. Int J Hydrogen Energy 45:2872–2883

    Article  CAS  Google Scholar 

  35. Dai HB, Liang Y, Wang P, Cheng HM (2008) Amorphous cobalt-boron/nickel foam as an effective catalyst for hydrogen generation from alkaline sodium borohydride solution. J Power Sources 177:17–23

    Article  CAS  Google Scholar 

  36. Dai HB, Liang Y, Wang P, Yao XD, Rufford T, Lu M, Cheng HM (2008) High-performance cobalt-tungsten-boron catalyst supported on Ni foam for hydrogen generation from alkaline sodium borohydride solution. Int J Hydrogen Energy 33:4405–4412

    Article  CAS  Google Scholar 

  37. Kıpçak İ, Kalpazan E (2020) Preparation of CoB catalysts supported on raw and Na exchanged bentonite clays and their application in hydrogen generation from the hydrolysis of NaBH4. Int J Hydrogen Energy 45:26434–26444

    Article  Google Scholar 

  38. Balbay A, Seviltepe N, Saka C (2021) Fe doped-CoB catalysts with phosphoric acid-activated montmorillonite as support for efficient hydrogen production via NaBH4 hydrolysis. Int J Hydrogen Energy 46:425–438

    Article  CAS  Google Scholar 

  39. Tian H, Guo Q, Xu D (2010) Hydrogen generation from catalytic hydrolysis of alkaline sodium borohydride solution using attapulgite clay-supported Co-B catalyst. J Power Sources 195:2136–2142

    Article  CAS  Google Scholar 

  40. Zhao J, Ma H, Chen J (2007) Improved hydrogen generation from alkaline solution using carbon-supported as catalysts. Int J Hydrogen Energy 32:4711–4716

    Article  CAS  Google Scholar 

  41. Xu D, Dai P, Liu X, Cao C, Guo Q (2008) Carbon-supported cobalt catalyst for hydrogen generation from alkaline sodium borohydride solution. J Power Sources 182:616–620

    Article  CAS  Google Scholar 

  42. Özdemir E (2015) Enhanced catalytic activity of Co-B/glassy carbon and Co-B/graphite catalysts for hydrolysis of sodium borohydride. Int J Hydrogen Energy 40:14045–14051

    Article  Google Scholar 

  43. Shi L, Xie W, Jian Z, Liao X, Wang Y (2019) Graphene modified Co-B catalysts for rapid hydrogen production from NaBH4 hydrolysis. Int J Hydrogen Energy 44:17954–17962

    Article  CAS  Google Scholar 

  44. Cui Z, Guo Y, Ma J (2016) In situ synthesis of graphene supported Co-Sn-B alloy as an efficient catalyst for hydrogen generation from sodium borohydride hydrolysis. Int J Hydrogen Energy 41:1592–1599

    Article  CAS  Google Scholar 

  45. Loghmani MH, Shojaei AF, Khakzad M (2017) Hydrogen generation as a clean energy through hydrolysis of sodium borohydride over Cu-Fe-B nano powders: Effect of polymers and surfactants. Energy 126:830–840

    Article  CAS  Google Scholar 

  46. Li Q, Yang W, Li F, Cui A, Hong J (2018) Preparation of CoB/ZIF-8 supported catalyst by single step reduction and its activity in hydrogen production. Int J Hydrogen Energy 43:271–282

    Article  CAS  Google Scholar 

  47. Manna J, Roy B, Sharma P (2014) Zeolite supported cobalt catalysts for sodium borohydride hydrolysis. Appl Mech Mater 490–491:213–217

    Google Scholar 

  48. Saka C, Eygi MS, Balbay A (2020) CoB doped acid modified zeolite catalyst for enhanced hydrogen release from sodium borohydride hydrolysis. Int J Hydrogen Energy 45:15086–15099

    Article  CAS  Google Scholar 

  49. Hartmann M, Machoke AG, Schwieger W (2016) Catalytic test reactions for the evaluation of hierarchical zeolites. Chem Soc Rev 45:3313–3330

    Article  CAS  PubMed  Google Scholar 

  50. Barrer RM (1978) Zeolites and clay minerals as sorbents and molecular sieves. Academic Press, London - New York

    Google Scholar 

  51. Pearce HA (1975) Zeolite molecular sieves-Structure, chemistry and use. J Chromatogr A 106:499

    Article  Google Scholar 

  52. Sene RA, Moradi GR, Sharifnia S (2017) Sono-dispersion of TiO2 nanoparticles over clinoptilolite used in photocatalytic hydrogen production: Effect of ultrasound irradiation during conventional synthesis methods. Ultrason Sonochem 37:490–501

    Article  Google Scholar 

  53. Li Q, Kim H (2012) Hydrogen production from NaBH4 hydrolysis via Co-ZIF-9 catalyst. Fuel Process Technol 100:43–48

    Article  CAS  Google Scholar 

  54. Zhou J, Yan J, Meng X, Chen W, Guo J, Liu X (2022) Co0.45W0.55 nanocomposite from ZIF-67: An efficient and heterogeneous catalyst for H2 generation upon NaBH4 hydrolysis. Catal Lett 152:610–618

    Article  CAS  Google Scholar 

  55. Treacy MMJ, Higgins JB (2001) Collection of simulated XRD powder patterns for zeolites, 4th edn. Elsevier, Amsterdam

    Google Scholar 

  56. He Y, Lin H, Dong Y, Li B, Wang L, Chu S, Luo M, Liu J (2018) Zeolite supported Fe/Ni bimetallic nanoparticles for simultaneous removal of nitrate and phosphate: synergistic effect and mechanism. Chem Eng J 347:669–681

    Article  CAS  Google Scholar 

  57. Cura Ö, Ajjaq A, Çağırtekin AO, Cavdar S, Acar S (2021) Low-energy ball milling effect on the dielectric response and electrical transport mechanisms of natural clinoptilolite zeolites in a wide temperature range. Mater Today Commun 29:102964

    Article  CAS  Google Scholar 

  58. Rashid T, Iqbal D, Hazafa A, Hussain S, Sher F, Sher F (2020) Formulation of zeolite supported nano-metallic catalyst and application in textile effluent treatment. J Environ Chem Eng 8:104023

    Article  CAS  Google Scholar 

  59. Rahmayani RFI, Arryanto Y, Kartini I (2020) The effect of alkaline activation on the zeolite binding properties toward dissolved irons. J Phys Conf Ser 1460:012084

    Article  CAS  Google Scholar 

  60. Silva M, Lecus A, Lin Y, Corrao J (2019) Tailoring natural zeolites by acid treatments. J Mater Sci Chem Eng 7:26–37

    CAS  Google Scholar 

  61. Vicente JGP, Lima PM, Cardoso D (2017) Nanosized particles of X zeolite containing ammonium cations as basic catalysts. Catal Lett 147:880–892

    Article  CAS  Google Scholar 

  62. Ramli NAS, Amin NAS (2015) Fe/HY zeolite as an effective catalyst for levulinic acid production from glucose: Characterization and catalytic performance. Appl Catal B-Environ 163:487–498

    Article  CAS  Google Scholar 

  63. Lashdaf M, Tiitta M, Venalainen T, Österholm H, Krause AOI (2004) Ruthenium on beta zeolite in cinnamaldehyde hydrogenation. Catal Lett 94:7–14

    Article  CAS  Google Scholar 

  64. Yang CC, Chen MS, Chen YW (2011) Hydrogen generation by hydrolysis of sodium borohydride on CoB/SiO2 catalyst. Int J Hydrogen Energy 36:1418–1423

    Article  CAS  Google Scholar 

  65. Estrada-Cabrera E, Torres-Ferrer LR, Luna-Barcenas G, Ramirez-Bon R (2021) Cellulose dialysis membrane containing raw clinoptilolite enhances the removal of Rhodamine 6G from aqueous solutions. Micropor Mesopor Mat 321:111113

    Article  CAS  Google Scholar 

  66. Coombs DS, Alberti A, Armbruster T, Artioli G, Colella C, Galli E, Grice JD, Liebau F, Mandarino JA, Minato H, Nickel EH, Passaglia E, Peacor DR, Quartieri S, Rinaldi R, Ross M, Sheppard RA, Tillmanns E, Vezzalini G (1997) Recommended nomenclature for zeolite minerals: Report of the subcommittee on zeolites of the International Mineralogical Association, Commission on new Minerals and Mineral names. Canad Mineral 35:1571–1606

    CAS  Google Scholar 

  67. Mumpton FA (1999) La roca magica: Uses of natural zeolites in agriculture and industry. Proc Natl Acad Sci USA 96:3463–3470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Korkuna O, Leboda R, Skubiszewska-Zie BJ, T, Vrublevs’ka, VM, Gun’Ko, J, Ryczkowski (2006) Structural and physicochemical properties of natural zeolites: clinoptilolite and mordenite. Micropor Mesopor Mat 87:243–254

  69. Delmas J, Laversenne L, Rougeaux I, Capron P, Garron A, Bennici S, Swierczynski D, Auroux A (2011) Improved hydrogen storage capacity through hydrolysis of solid NaBH4 catalyzed with cobalt boride. Int J Hydrogen Energy 36:2145–2153

    Article  CAS  Google Scholar 

  70. Geobaldo F, Onida B, Rivolo P, Di Renzo F, Fajula F, Garrone E (2001) Nature and reactivity of Co species in a cobalt-containing beta zeolite: an FTIR study. Catal Today 70:107–119

    Article  CAS  Google Scholar 

  71. Zhou J, Zheng F, Li H, Wang J, Bu N, Hu P, Gao J, Zhen Q, Bashir S, Liu JL (2020) Optimization of post-treatment variables to produce hierarchical porous zeolites from coal gangue to enhance adsorption performance. Chem Eng J 381:122698

    Article  CAS  Google Scholar 

  72. Das G, Mariotto G, Quaranta A (2006) Microstructural evolution of thermally treated low-dielectric constant SiOC: H films prepared by PECVD. J Electrochem Soc 153:F46

    Article  CAS  Google Scholar 

  73. Onutai S, Sato J, Osugi T (2023) Possible pathway of zeolite formation through alkali activation chemistry of metakaolin for geopolymer–zeolite composite materials: ATR-FTIR study. J Solid State Chem 319:123808

    Article  CAS  Google Scholar 

  74. Elaiopoulos K, Perraki T, Grigoropoulou E (2010) Monitoring the effect of hydrothermal treatments on the structure of a natural zeolite through a combined XRD, FTIR, XRF, SEM and N2-porosimetry analysis. Micropor Mesopor Mat 134:29–43

    Article  CAS  Google Scholar 

  75. Li W, Jin H, Xie H, Wang D, Lei E (2023) Utilization of electrolytic manganese residue to synthesize zeolite A and zeolite X for Mn ions adsorption. J Ind Eng Chem 120:147–158

    Article  CAS  Google Scholar 

  76. Hameed AM, Alharbi A, Abdelrahman EA, Mabrouk EM, Hegazey RM, Algethami FK, Al-Ghamdi YO, Youssef HM (2020) Facile hydrothermal fabrication of analcime and zeolite X for efficient removal of Cd(II) ions from aqueous media and polluted water. J Inorg Organomet Polym Mater 30:4117–4128

    Article  CAS  Google Scholar 

  77. Volli V, Purkait MK (2015) Selective preparation of zeolite X and A from fly ash and its use as catalyst for biodiesel production. J Hazard Mater 297:101–111

    Article  CAS  PubMed  Google Scholar 

  78. Sobhy S, Elsenety MM, Mohamed MBI, Moustafa YM, Salama TM (2022) Molecular dynamic simulations for interactions of oxytetracycline with copper(II)-exchanged NaY zeolite. Inorg Chem Commun 144:109829

    Article  CAS  Google Scholar 

  79. Altaf CT, Colak TO, Minkina VG, Shabunya SI, Sankir M, Sankir ND, Kalinin VI (2023) Effect of titanium dioxide support for cobalt nanoparticle catalysts for hydrogen generation from sodium borohydride hydrolysis. Catal Lett 153:3136–3147

    Article  CAS  Google Scholar 

  80. Şahin Ö, Karakaş DE, Kaya M, Saka C (2017) The effects of plasma treatment on electrochemical activity of Co-B-P catalyst for hydrogen production by hydrolysis of NaBH4. J Energy Inst 90:466–475

    Article  Google Scholar 

  81. Moulder JF, Stickle WF, Sobol PE, Bomben KD (ed. J Chastain) (1992) Handbook of X-ray photoelectron spectroscopy. Perkin-Elmer Corporation Physical Electronics Division, Minnesota USA

  82. Akti F (2021) Hydrogen generation from hydrolysis of sodium borohydride by silica xerogel supported cobalt catalysts: Positive roles of amine modification and calcination treatment. Fuel 303:121326

    Article  CAS  Google Scholar 

  83. Zhang H, Zhang L, Rodriguez-Perez IA, Miao W, Chen K, Wang W, Li Y, Han S (2021) Carbon nanospheres supported bimetallic Pt-Co as an efficient catalyst for NaBH4 hydrolysis. Appl Surf Sci 540:148296

    Article  CAS  Google Scholar 

  84. Cabrera-German D, Gomez-Sosa G, Herrera-Gomez A (2016) Accurate peak fitting and subsequent quantitative composition analysis of the spectrum of Co 2p obtained with Al Kα radiation: I: cobalt spinel. Surf Interface Anal 48:252–256

    Article  CAS  Google Scholar 

  85. Chu W, Yu Y, Sun D, Qu Y, Meng F, Qiu Y, Lin S, Huang L, Ren J, Su Q, Xu B (2022) Uniform cobalt nanoparticles embedded in nitrogen-doped graphene with abundant defects as high-performance bifunctional electrocatalyst in overall water splitting. Int J Hydrogen Energy 47:21191–21203

    Article  CAS  Google Scholar 

  86. Ding J, Mo Z, Zhu X, Zhu J, Yang R, Li R, Liu N, Guo R (2024) Amorphous cobalt-iron boride nanoparticles grown on B, N-doped carbon frame for efficient electrocatalytic oxygen evolution. Int J Hydrogen Energy 51:259–270

    Article  CAS  Google Scholar 

  87. Guo J, Hou Y, Li B, Liu Y (2018) Novel Ni-Co-B hollow nanospheres promote hydrogen generation from the hydrolysis of sodium borohydride. Int J Hydrogen Energy 43:15245–15254

    Article  CAS  Google Scholar 

  88. Netskina OV, Kochubey DI, Prosvirin IP, Kellerman DG, Simagina VI, Komova OV (2014) Role of the electronic state of rhodium in sodium borohydride hydrolysis. J Mol Catal A-Chem 390:125–132

    Article  CAS  Google Scholar 

  89. Retnamma R, Novais AQ, Rangel CM (2011) Kinetics of hydrolysis of sodium borohydride for hydrogen production in fuel cell applications: A review. Int J Hydrogen Energy 36:9772–9790

    Article  CAS  Google Scholar 

  90. Dai HB, Liang Y, Wang P (2011) Effect of trapped hydrogen on the induction period of cobalt–tungsten–boron/nickel foam catalyst in catalytic hydrolysis reaction of sodium borohydride. Catal Today 170:27–32

    Article  CAS  Google Scholar 

  91. Zhang X, Wei Z, Guo Q, Tian H (2013) Kinetics of sodium borohydride hydrolysis catalyzed via carbon nanosheets supported Zr/Co. J Power Sources 231:190–196

    Article  CAS  Google Scholar 

  92. Wang L, Li Z, Zhang P, Wang G, Xie G (2016) Hydrogen generation from alkaline NaBH4 solution using Co-Ni-Mo-P/γ-Al2O3 catalysts. Int J Hydrogen Energy 41:1468–1476

    Article  CAS  Google Scholar 

  93. Wu Z, Ge S (2011) Facile synthesis of a Co-B nanoparticle catalyst for efficient hydrogen generation via borohydride hydrolysis. Catal Commun 13:40–43

    Article  CAS  Google Scholar 

  94. Wang J, Ke D, Li Y, Zhang H, Wang C, Zhao X, Yuan Y, Han S (2017) Efficient hydrolysis of alkaline sodium borohydride catalyzed by cobalt nanoparticles supported on three–dimensional graphene oxide. Mater Res Bull 95:204–210

    Article  CAS  Google Scholar 

  95. Chen B, Chen S, Bandal HA, Appiah-Ntiamoah R, Jadhav AR, Kim H (2018) Cobalt nanoparticles supported on magnetic core-shell structured carbon as a highly efficient catalyst for hydrogen generation from NaBH4 hydrolysis. Int J Hydrogen Energy 43:9296–9306

    Article  CAS  Google Scholar 

  96. Saka C, Kaya M, Bekiroğulları M (2020) Chlorella vulgaris microalgae strain modified with zinc chloride as a new support material for hydrogen production from NaBH4 methanolysis using CuB, NiB, and FeB metal catalysts. Int J Hydrogen Energy 45:1959–1968

    Article  CAS  Google Scholar 

  97. Jeong SU, Kim RK, Cho EA, Kimb HJ, Nam SW, Oh IH, Hong SA, Kim SH (2005) A study on hydrogen generation from NaBH4 solution using the high-performance Co-B catalyst. J Power Sources 144:129–134

    Article  CAS  Google Scholar 

  98. Zhao S, Li F, Li Q, Liang Z (2016) Preparation of USY zeolite supported cobalt boride amorphous alloy catalysts and its application in catalytic hydrogen production via hydrolysis of sodium borohydride. Chin J Appl Chem 33:655–660

    CAS  Google Scholar 

  99. Ye W, Zhang H, Xu D, Ma L, Yi B (2007) Hydrogen generation utilizing alkaline sodium borohydride solution and supported cobalt catalyst. J Power Sources 164:544–548

    Article  CAS  Google Scholar 

  100. Saka C (2023) Nitrogen and oxygen heteroatom doping with hydrothermal nitric acid treatment on the catalytic performance of metal-free carbon particles: Hydrogen release from sodium borohydride in methanol. Catal Lett 153:3734–3749

    Article  CAS  Google Scholar 

  101. Shen X, Wang Q, Wu Q, Guo S, Zhang Z, Sun Z, Liu B, Wang Z, Zhao B, Ding W (2015) CoB supported on Ag-activated TiO2 as a highly active catalyst for hydrolysis of alkaline NaBH4 solution. Energy 90:464–474

    Article  CAS  Google Scholar 

  102. Li Y, Hou X, Wang J, Feng X, Cheng L, Zhang H, Han S (2019) Co-Mo nanoparticles loaded on three-dimensional graphene oxide as efficient catalysts for hydrogen generation from catalytic hydrolysis of sodium borohydride. Int J Hydrogen Energy 44:29075–29082

    Article  CAS  Google Scholar 

  103. Wang Y, Wang D, Zhao C, Meng W, Zhao T, Cao Z, Zhang K, Bai S, Li G (2019) Co-Mo-B nanoparticles supported on foam Ni as efficient catalysts for hydrogen generation from hydrolysis of ammonia borane solution. Int J Hydrogen Energy 44:10508–10518

    Article  CAS  Google Scholar 

  104. Wang Y, Zou K, Zhang D, Li G, Meng W, Wang D, Cao Z, Zhang K, Wu S (2020) Co-Mo-B nanoparticles supported on carbon cloth as effective catalysts for the hydrolysis of ammonia borane. Int J Hydrogen Energy 45:14418–14427

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work has been supported by Eskişehir Osmangazi University Scientific Research Projects Coordination Unit under grant number: 201915A212.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to İlker Kıpçak.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest or personal relationships that may affect the work reported in this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (TIF 5135 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kıpçak, İ., Kalpazan, E. Efficient and Stable Co-B Catalyst Supported on Natural Zeolite for Hydrogen Generation from Hydrolysis of Alkaline NaBH4 Solution. Catal Lett (2024). https://doi.org/10.1007/s10562-024-04702-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10562-024-04702-1

Keywords

Navigation