Skip to main content
Log in

Efficient hydrogen production and electricity generation in solar-driven single-photoelectrode photocatalytic fuel cell

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

This work reports a novel TiO2/g-C3N4 photoanode-based photocatalytic fuel cell (PFC) designed to convert chemical energy from simulated wastewater. The g-C3N4 modified TiO2 nanorod was successfully synthesized by a facile hydrothermal method. The results indicated that the maximum photocurrent density reached 2.44 mA cm-2 at 1.23 V vs. RHE by 1.167 g L-1 g-C3N4 loaded TiO2 composite. On the basis of analysis, the photoelectrochemical mechanism of the composite photoanode was proposed. This mainly demonstrated that the composite photoanode increases the electron donor density and boosts charge separation efficiency. In addition, the power density and hydrogen production of the proposed PFC were enhanced by 5.37 and 1.49 times compared to TiO2 photoanode-based PFC. To find the origins of the excellent performance of PFC, the influence of the organic compounds were investigated. The ESR measurement results indicated that the organic matter was captured by the photoexcited holes directly to facilitate the charge separation. The achieved power density and hydrogen production of 0.14 mW cm-2 and 21.60 μmol h-1 cm-2 were measured using RhB as the model pollutant, which was 2.42 and 1.23 times higher than the experiments with PBS electrolyte. This study proposed a novel PFC system converts the organic pollutant to the hydrogen and the electricity.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Liu C, Chen L, Su X, Chen S, Zhang J, Yang H, Pei Y (2022) Activating a TiO2/BiVO4 film for photoelectrochemical water splitting by constructing a heterojunction interface with a uniform crystal plane orientation. ACS Appl Mater Interfaces 14:2316–2325

    Article  CAS  PubMed  Google Scholar 

  2. Zheng X, Wu D, Liu Y, Li J, Yang Y, Huang W, Liu W, Shen Y, Tian X (2022) Photocatalytic reduction of water to hydrogen by CuPbSbS3 nanoflakes. Mater Today Energy 25:100956

    Article  CAS  Google Scholar 

  3. Nishioka S, Osterloh FE, Wang XC, Mallouk TE, Maeda K (2023) Photocatalytic water splitting. Nat Rev Method Prime 3(1):42

    Article  CAS  Google Scholar 

  4. Liu WJ, Hou SY, Liu XC, Wang YH, Xin SS, Fu WX, Gao MC, Xie HJ (2023) Coupling photocatalytic fuel cell based on S-scheme g-C3N4/TNAs photoanode with H2O2 activation for p-chloronitrobenzene degradation and simultaneous electricity generation under visible light. Sep Purif Technol 304:122336

    Article  CAS  Google Scholar 

  5. He Y, Chen K, Leung MKH, Zhang Y, Li L, Li G, Xuan J, Li J (2022) Photocatalytic fuel cell – A review. Chem Eng J 428:131074

    Article  CAS  Google Scholar 

  6. Wu R, Yi J, Bao R, Liu P (2022) The excellent photocatalytic capability of TiO2@C/O-doped g-C3N4 heterojunction photocatalyst. Colloid Surface A 648:129351

    Article  CAS  Google Scholar 

  7. Xia X, Xie C, Xu B, Ji X, Gao G, Yang P (2022) Role of B-doping in g-C3N4 nanosheets for enhanced photocatalytic NO removal and H2 generation. J Ind Eng Chem 105:303–312

    Article  CAS  Google Scholar 

  8. Ma DD, Zhang ZM, Zou YJ, Chen JT, Shi JW (2024) The progress of g-C3N4 in photocatalytic H2 evolution: From fabrication to modification. Coordin Chem Rev 500:215489

    Article  CAS  Google Scholar 

  9. Solayman HM, Aziz AA, Yahya NY, Leong KH, Sim LC, Hossain MK, Khan MB, Zoh KD (2024) CQDs embed g-C3N4 photocatalyst in dye removal and hydrogen evolution: An insight review. J Water Process Eng 57:104645

    Article  Google Scholar 

  10. Yao Z, Sun H, Xiao S, Hu YL, Liu XF, Zhang Y (2022) Ti3C2 quantum dots modified on BiOBr surface for sewage disposal: the induction of the piezo-phototronic effect from edge to whole. Appl Surf Sci 599:153911

    Article  CAS  Google Scholar 

  11. Liu W, Chu L, Hu R, Zhang R, Ma Y, Pu Y, Zhang J, Yang J, Li XA, Huang W (2018) Diameter engineering on TiO2 nanorod arrays for improved hole-conductor-free perovskite solar cells. Solar Energy 166:42–49

    Article  CAS  Google Scholar 

  12. Yang J, Wu Y, Dong Y, Cui H, Shi CY, Sun H, Yin SY (2022) Bi@ H-TiO2/B-C3N4 heterostructure for enhanced photocatalytic hydrogen generation activity under visible light. J Ind Eng Chem 111:509–518

    Article  CAS  Google Scholar 

  13. Murthy DHK, Nandal V, Furube A, Seki K, Katoh R, Lyu H, Hisatomi T, Domen K, Matsuzaki H (2023) Origin of enhanced overall water splitting efficiency in aluminum-doped SrTiO3 photocatalyst. Adv Energy Mater 13(40):2302064

    Article  CAS  Google Scholar 

  14. Liang Z, Xue Y, Wang X, Zhou Y, Zhang X, Cui H, Cheng G, Tian J (2021) Co doped MoS2 as cocatalyst considerably improved photocatalytic hydrogen evolution of g-C3N4 in an alkalescent environment. Chem Eng J 421:130016

    Article  CAS  Google Scholar 

  15. Ramadan W, Feldhoff A, Bahnemann D (2021) Assessing the photocatalytic oxygen evolution reaction of BiFeO3 loaded with IrO2 nanoparticles as cocatalyst. Sol Energ Mat Sol C 232:111349

    Article  CAS  Google Scholar 

  16. Hosseini S, Azizi N (2023) Novel, Robust and efficient W/Co@g-C3N4 catalyst enable outstanding performance for the straightforward oxidative amidation of aldehydes with amines. Catal Lett: 1–16. https://doi.org/10.1007/s10562-023-04508-7

  17. Zheng ZH, Yao XS, Zhang S, Fang L, Jiang Z (2023) In-situ Raman study of α-D-glucose under different pressure and temperature. J Mol Struct 1274:134539

    Article  CAS  Google Scholar 

  18. Di J, Xia J, Ge Y, Xu L, Xu H, Chen J, He M, Li H (2014) Facile fabrication and enhanced visible light photocatalytic activity of few-layer MoS(2) coupled BiOBr microspheres. Dalton Trans 43:15429–15438

    Article  CAS  PubMed  Google Scholar 

  19. Qi XY, Tang X, Li Q, Yao Y (2023) Immediate oxidative desulfurization via Fe-containing Ti-nanotube triggered combined-radical mechanism. Catal Lett 153(7):2169–2175

    Article  CAS  Google Scholar 

  20. Wang YY, Zhong SY, Niu ZH, Dai YY, Li Jian (2023) Synthesis and up-to-date applications of 2D microporous g-C3N4 nanomaterials for sustainable development. Chem Commun 59(73):10883–10911

    Article  CAS  Google Scholar 

  21. Zhu HB, Gu S, Zhang CM, Gao KY, Xia JJ, Cheng CL, Wang XF (2023) Regulating electron-transfer over ZnIn2S4 by Sn (II)/Sn (IV) Co-doping for efficient photocatalytic hydrogen production. Catal Lett 153(8):2245–2259

    Article  CAS  Google Scholar 

  22. Mehta M, Krishnamurthy S, Basu S, Nixon TP, Singh AP (2020) BiVO4/TiO2 core-shell heterostructure: wide range optical absorption and enhanced photoelectrochemical and photocatalytic performance. Mater Today Chem 17:100283

    Article  CAS  Google Scholar 

  23. Wang Q, Niu T, Wang L, Yan C, Huang J, He J, She H, Su B, Bi Y (2018) FeF2/BiVO4 heterojuction photoelectrodes and evaluation of its photoelectrochemical performance for water splitting. Chem Eng J 337:506–514

    Article  CAS  Google Scholar 

  24. Mbrouk O, Fawzy M, Shafey HME, Saif M, Mottaleb MSAA, Hafez H (2023) Viable production of hydrogen and methane from polluted water using eco-friendly plasmonic Pd–TiO2 nanocomposites. RSC advances 13(2):770–780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. He F, Wang Z, Li Y, Peng S, Liu B (2020) The nonmetal modulation of composition and morphology of g-C3N4-based photocatalysts. Appl Catal B-Environ 269:118828

    Article  CAS  Google Scholar 

  26. Zhou KH, Li P, Zhu YW, Ye XM, Chen HZ, Yang YP, Dan YQ, Yuan YF, Hou HL (2021) Atomic Layer Deposition of ZnO on TiO2 Nanofibers for Boosted Photocatalytic Hydrogen Production. Catal Lett 151:78–85

    Article  CAS  Google Scholar 

  27. Shen WC, Hu TT, Liu XY, Zha JJ, Meng FQ, Wu ZK, Cui ZL, Yang Y, Li H, Zhang QH, Gu L, Liang RZ, Tan CL (2022) Defect engineering of layered double hydroxide nanosheets as inorganic photosensitizers for NIR-III photodynamic cancer therapy. Nat commun 13(1):1–14

    Article  Google Scholar 

  28. Srinivasan R, Elaiyappillai E, AnandarajDuvaragan SBK, Johnson PM (2020) Study on the electrochemical behavior of BiVO4/PANI composite as a high performance supercapacitor material with excellent cyclic stability. J Electroanalytical Chem 861:113972

    Article  CAS  Google Scholar 

  29. Wu B, Wang T, Liu B, Li HM, Wang YL, Wang SJ, Zhang LL, Jiang SK, Pei CL, Gong JL (2022) Stable solar water splitting with wettable organic-layer-protected silicon photocathodes. Nat Commun 13(1):1–10

    Google Scholar 

  30. Saruyama M, Pelicano CM, Teranishi T (2022) Bridging electrocatalyst and cocatalyst studies for solar hydrogen production via water splitting. Chem Sci 13(10):2824–2840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lam SM, Sin JC, Tong MWW, Zeng HH, Li HX, Huang LL, Lin H, Lim JW (2023) Eminent destruction of organics and pathogens concomitant with power generation in a visible light-responsive photocatalytic fuel cell with NiFe2O4/ZnO pine tree-like photoanode and CuO/Cu2O nanorod cathode. Chemosphere 344:140402

    Article  CAS  PubMed  Google Scholar 

  32. Liu Q, Zhai D, Xiao Z, Tang C, Sun Q, Bowen CR, Luo H, Zhang D (2022) Piezo-photoelectronic coupling effect of BaTiO3@TiO2 nanowires for highly concentrated dye degradation. Nano Energy 92:106702

    Article  CAS  Google Scholar 

  33. Imam SS, Adnan R, Mohd Kaus NH (2020) Immobilization of BiOBr into cellulose acetate matrix as hybrid film photocatalyst for facile and multicycle degradation of ciprofloxacin. J Alloy Comp 843:155990

    Article  CAS  Google Scholar 

  34. Liu J, Huang L, Li Y, Yang L, Wang C, Liu J, Song Y, Tian Q, Li H (2022) Fabrication oxygen defect-mediated double Z-scheme BiOI/BiO2−x/BiOBr photocatalyst for pollutions degradation and bacteria inactivation. J Environ Chem Eng 10:106668

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Hubei Province Natural Science Foundation (No. 2023AFB938). Natural Science Foundation of Shandong Province Project (No. ZR2021QE067). National Natural Science Foundation of China Project (No. 52300099).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yun He.

Ethics declarations

Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 5396 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Lv, Z., Zhang, Y. et al. Efficient hydrogen production and electricity generation in solar-driven single-photoelectrode photocatalytic fuel cell. Catal Lett (2024). https://doi.org/10.1007/s10562-024-04701-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10562-024-04701-2

Keywords

Navigation