Skip to main content
Log in

Al2O3-Flower Anchoring Pd Catalyst for Acetylene Selective Hydrogenation: A Compartmentalizing Strategy Promotes Metal Dispersion and Maintains Stability

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

It is highly desired that performance of Pd catalysts is improved by the design and preparation of homogeneously dispersed and stablized in many industrial catalytic processes and still a big challenge. Herein, small-sized Pd over Al2O3-flower (f-Al2O3) via compartmentalization strategy is successfully prepared. Ultrafine Pd phases are highly dispersed and thermally stabilized by flower-liked architectures, which not only efficiently suppress Pd aggregation at reaction conditions, but also promote mass transport and reactants access to active sites easily. The catalysts exhibit a stable acetylene conversion of 93% with ethylene selectivity of 94% within a single running of 60 days (60 ℃, GHSV 4500 h−1) without introducing any promoter, and high TOF value (0.4 S−1) are achieved as well. This work provides a facile strategy of improving the activity and thermal stability of Al2O3-supported nano-catalysts in industrial application.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 3
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Zhang F, Zhang Q, Chen Y, Xu L, Li Z, Wang Q, Zhang Q, Li X (2023) Advances and mechanistic insights in the catalytic semi-hydrogenation of acetylene over non-metallic catalysts. Appl Catal A 667:119447

    Article  CAS  Google Scholar 

  2. Kley KS, De Bellis J, Schüth F (2023) Selective hydrogenation of highly concentrated acetylene streams over mechanochemically synthesized PdAg supported catalysts. Catal Sci Technol 13:119–131

    Article  CAS  Google Scholar 

  3. Zhang Y, Diao W, Williams CT, Monnier JR (2014) Selective hydrogenation of acetylene in excess ethylene using Ag- and Au–Pd/SiO2 bimetallic catalysts prepared by electroless deposition. Appl Catal A 469:419–426

    Article  CAS  Google Scholar 

  4. TakhtRavanchi M, Sahebdelfar S (2016) Pd-Ag/Al2O3 catalyst: Stages of deactivation in tail-end acetylene selective hydrogenation. Appl Catal A 525:197–203

    Article  CAS  Google Scholar 

  5. Naumann P, Scholz S, Herzfeld T (2023) Understanding the role of butadiene in the selective hydrogenation of acetylene under adiabatic conditions. Appl Catal A 664:119346

    Article  CAS  Google Scholar 

  6. Kim W-J, Moon SH (2012) Modified Pd catalysts for the selective hydrogenation of acetylene. Catal Today 185:2–16

    Article  CAS  Google Scholar 

  7. Sun M, Wang F, Lv G, Zhang X (2022) Effective inhibition of ethane generation on Fe5C2 nanoparticles doped with ppm level of Pd for selective hydrogenation of acetylene. Ind Eng Chem Res 61:13341–13353

    Article  CAS  Google Scholar 

  8. Zhang L, Zhou M, Wang A, Zhang T (2019) Selective hydrogenation over supported metal catalysts: From nanoparticles to single atoms. Chem Rev 120:683–733

    Article  PubMed  Google Scholar 

  9. Gou GL, Che CX, Wen H, Qin JH, Cao X, Han W, Zhang F, Long Y, Ma JT (2022) θ-Al2O3/FeO1.25 possessing a special ring complex of FeII-HO===FeIII for the efficient catalytic semi-hydrogenation of acetylene under front-end conditions. J Catal 408:128–132

    Article  CAS  Google Scholar 

  10. Wang H, Wang W, Wang R, Jiang X, Li W, He Z-H, Wang K, Yang Y, Li Q, Liu Z-T (2024) Palladium nanoparticles supported over acetylene black for selective hydrogenation of phenol to cyclohexanone. Appl Catal A 670:119520

    Article  CAS  Google Scholar 

  11. Zhou S, Wan Q, Lu C, Zeng A, Wang A, Li Q, Zhou C, Tan L, Dong L (2024) Partial carbon encapsulation synthesis of separated Ni-Ag catalyst for efficient selective hydrogenation of acetylene: Synergizing hydrogen spillover and steric hindrance. Appl Catal A 673:119590

    Article  CAS  Google Scholar 

  12. Kuhn M, Lucas M, Claus P (2015) Precise recognition of catalyst deactivation during acetylene hydrogenation studied with the advanced TEMKIN reactor. Catal Commun 72:170–173

    Article  CAS  Google Scholar 

  13. Hu MC, Wu ZY, Yao ZH, Young JS, Luo LL, Du YG, Wang CM, Iqbal Z, Wang XQ (2021) N8 stabilized single-atom Pd for highly selective hydrogenation of acetylene. J Catal 395:46–53

    Article  CAS  Google Scholar 

  14. Xu S, Du J, Li H, Tang J (2018) Zeolite@Pd/Al2O3 core-shell catalyst for efficient hydrodeoxygenation of phenolic biomolecules. Ind Eng Chem Res 57:14088–14095

    Article  CAS  Google Scholar 

  15. Jiang Y, Chang Q, Guan L, Teng B, Xu C, Zhang Y, Li X, Sheng Q, Yao Y, Lu S, Qin Y (2023) Efficient C=O bond hydrogenation of cinnamaldehyde over PtCu alloy frame: Insight into the morphology and Pt species state. Chem Eng J 477:146854

    Article  CAS  Google Scholar 

  16. Song MZ, Shao HJ, Chen Y, Deng XY, Chen YY, Yao Y, Lu SX, Liao XY (2022) Visible light-driven H2O2 synthesis over Au/C3N4: medium-sized Au nanoparticles exhibiting suitable built-in electric fields and inhibiting reverse H2O2 decomposition. Phys Chem Chem Phys 24:29557–29569

    Article  CAS  PubMed  Google Scholar 

  17. Jin Q, He Y, Miao M, Guan C, Du Y, Feng J, Li D (2015) Highly selective and stable PdNi catalyst derived from layered double hydroxides for partial hydrogenation of acetylene. Appl Catal A 500:3–11

    Article  CAS  Google Scholar 

  18. Zhong M, Zhao J, Fang Y, Wu D, Zhang L, Du C, Liu S, Yang S, Wan S, Jiang Y, Huang J, Xiong H (2023) Depositing Pd on the outmost surface of Pd1Ni/SiO2 single-atom alloy via atomic layer deposition for selective hydrogenation of acetylene. Appl Catal A 662:119288

    Article  CAS  Google Scholar 

  19. Stytsenko VD, Melnikov DP, Glotov AP, Vinokurov VA (2022) Kinetic regularities and mechanism of acetylene hydrogenation over PdMn catalyst. Mol Catal 533:112750

    Article  CAS  Google Scholar 

  20. McCue AJ, McRitchie CJ, Shepherd AM, Anderson JA (2014) Cu/Al2O3 catalysts modified with Pd for selective acetylene hydrogenation. J Catal 319:127–135

    Article  CAS  Google Scholar 

  21. Chinayon S, Mekasuwandumrong O, Praserthdam P, Panpranot J (2008) Selective hydrogenation of acetylene over Pd catalysts supported on nanocrystalline α-Al2O3 and Zn-modified α-Al2O3. Catal Commun 9:2297–2302

    Article  CAS  Google Scholar 

  22. Pei GX, Liu XY, Yang X, Zhang L, Wang A, Li L, Wang H, Wang X, Zhang T (2017) Performance of Cu-slloyed Pd single-atom catalyst for semihydrogenation of acetylene under simulated front-end conditions. ACS Catal 7:1491–1500

    Article  CAS  Google Scholar 

  23. Fang CH, Harold MP (2023) Low temperature NH3 regeneration of a sulfur poisoned Pt/Al2O3 monolith catalyst. Catal Sci Technol 15:6718–6732

  24. Pachulski A, Schödel R, Claus P (2011) Performance and regeneration studies of Pd-Ag/Al2O3 catalysts for the selective hydrogenation of acetylene. Appl Catal A 400:14–24

    Article  CAS  Google Scholar 

  25. Kim SK, Kim C, Lee JH, Kim J, Lee H, Moon SH (2013) Performance of shape-controlled Pd nanoparticles in the selective hydrogenation of acetylene. J Catal 306:146–154

    Article  CAS  Google Scholar 

  26. Yang Z, Li Y, Cao Y, Zhao X, Chen W, Zhang J, Qian G, Peng C, Gong X, Duan X (2022) Al2O3 microrods supported Pd catalysts for semi-hydrogenation of acetylene: Acidic properties tuned reaction kinetics behaviors. Chem Eng J 445:136681

    Article  CAS  Google Scholar 

  27. Yang X, Li Q, Lu E, Wang Z, Gong X, Yu Z, Guo Y, Wang L, Guo Y, Zhan W, Zhang J, Dai S (2019) Taming the stability of Pd active phases through a compartmentalizing strategy toward nanostructured catalyst supports. Nat Commun 10:1611

    Article  PubMed  PubMed Central  Google Scholar 

  28. Li Z, Lin G, Chen Y, Xue Q, Feng K, Yan B (2023) Regulating metal-support interactions of Pd/MgAl2O4 for efficient selective hydrogenation of acetylene. Catal Today 423:114253

    Article  CAS  Google Scholar 

  29. Liu T, Yan H, Xu J, Xu X, Lv Y, Fang X, Wang X (2023) Promoting Pd/Al2O3 catalysts for toluene combustion by DBD plasma treating in different working gas atmospheres. Catal Today 421:114177

    Article  CAS  Google Scholar 

  30. Li C, Zhang P, Gu F, Tong L, Jiang J, Zuo Y, Dong H (2023) Atomically dispersed Au confined by oxygen vacancies in Au-θ-Al2O3/Au/PCN hybrid for boosting photocatalytic CO2 reduction driven by multiple built-in electric fields. Chem Eng J 476:146514

  31. Qi C, Zhu S, Su H, Lin H, Guan R (2013) Stability improvement of Au/Fe-La-Al2O3 catalyst via incorporating with a FexOy layer in CO oxidation process. Appl Catal B 138–139:104–112

    Article  Google Scholar 

  32. Xing H, Chen W, Liu C, Ji X, Yang P (2022) Construction of core–shell-structured Al2O3@ppy composites with high-performance electromagnetic wave absorption performance. J Mater Sci: Mater Electron 33:23196–23211

    CAS  Google Scholar 

  33. Cao Y, Fu W, Sui Z, Duan X, Chen D, Zhou X (2019) Kinetics insights and active sites discrimination of Pd-catalyzed selective hydrogenation of acetylene. Ind Eng Chem Res 58:1888–1895

    Article  CAS  Google Scholar 

  34. Yang B, Burch R, Hardacre C, Headdock G, Hu P (2013) Influence of surface structures, subsurface carbon and hydrogen, and surface alloying on the activity and selectivity of acetylene hydrogenation on Pd surfaces: A density functional theory study. J Catal 305:264–276

    Article  CAS  Google Scholar 

  35. Li Q, Wang Y, Skoptsov G, Hu J (2019) Selective hydrogenation of acetylene to ethylene over bimetallic catalysts. Ind Eng Chem Res 58:20620–20629

    Article  CAS  Google Scholar 

  36. Feng QC, Zhao S, Xu Q, Chen WX, Tian SB, Wang Y, Yan WS, Luo J, Wang DS, Li YD (2019) Mesoporous nitrogen-doped carbon-nanosphere-supported isolated single-atom Pd catalyst for highly efficient semihydrogenation of acetylene. Adv Mater 31:7

    Article  Google Scholar 

  37. Xu J, Huang W, Li R, Li L, Ma J, Qi J, Ma H, Ruan M, Lu L (2024) Potassium regulating electronic state of zirconia supported palladium catalyst and hydrogen spillover for improved acetylene hydrogenation. J Colloid Interface Sci 655:584–593

    Article  CAS  PubMed  Google Scholar 

  38. Glyzdova DV, Afonasenko TN, Khramov EV, Leont’eva NN, Trenikhin MV, Kremneva AM, Shlyapin DA (2021) Effect of pretreatment with hydrogen on the structure and properties of carbon-supported Pd-Ag-nanoalloys for ethylene production by acetylene hydrogenation. Mol Catal 511:111717

    Article  CAS  Google Scholar 

  39. Xie K, Xu K, Liu M, Song X, Xu S, Si H (2023) Catalysts for selective hydrogenation of acetylene: A review. Mater Today Catal 3:100029

    Article  Google Scholar 

  40. Qiao B, Wang A, Yang X, Allard LF, Jiang Z, Cui Y, Liu J, Li J, Zhang T (2011) Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat Chem 3:634–641

    Article  CAS  PubMed  Google Scholar 

  41. Yuan E, Wu C, Hou X, Dou M, Liu G, Li G, Wang L (2017) Synergistic effects of second metals on performance of (Co, Ag, Cu)-doped Pd/Al2O3 catalysts for 2-ethyl-anthraquinone hydrogenation. J Catal 347:79–88

    Article  CAS  Google Scholar 

  42. Yang M, Yang T, Ma R, Li S, He Y, Li D (2023) Engineering of Ag@Pd/Al2O3 with varied Pd-shell thickness: Dynamic evolution of ligand and strain effects on acetylene selective hydrogenation. Chin J Chem Eng 64:139–148

    Article  CAS  Google Scholar 

  43. Che CX, Gou GL, Wen H, Liang YL, Han W, Zhang F, Cai XX (2021) Study on the reaction mechanism of acetylene selective hydrogenation catalysts Pd-Ag/Al2O3. Inorg Nano-Metal Chem 51:70–77

    Article  CAS  Google Scholar 

  44. Cao YQ, Fu WZ, Ren ZH, Sui ZJ, Zhou JH, Luo J, Duan XZ, Zhou XG (2020) Tailoring electronic properties and kinetics behaviors of Pd/N-CNTs catalysts for selective hydrogenation of acetylene. Aiche J 66:11

    Article  Google Scholar 

  45. Li G, Zhao B, Wang Q, Zhou R (2010) The effect of Ni on the structure and catalytic behavior of model Pd/Ce0.67Zr0.33O2 three-way catalyst before and after aging. Appl Catal B 97:41–48

    Article  CAS  Google Scholar 

  46. Sun M, Hu W, Yuan S, Zhang H, Cheng T, Wang J, Chen Y (2020) Effect of the loading sequence of CeO2 and Pd over Al2O3 on the catalytic performance of Pd-only close-coupled catalysts. Mol Catal 482:100332

    Article  CAS  Google Scholar 

  47. Lin S, Yang X, Yang L, Zhou R (2015) Three-way catalytic performance of Pd/Ce0.67Zr0.33O2–Al2O3 catalysts: Role of the different Pd precursors. Appl Surf Sci 327:335–343

    Article  CAS  Google Scholar 

  48. Ma R, Yang T, Sun J, He Y, Feng J, Miller JT, Li D (2019) Nanoscale surface engineering of PdCo/Al2O3 catalyst via segregation for efficient purification of ethene feedstock. Chem Eng Sci 210:115216

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoyuan Liao.

Ethics declarations

Conflict of Interests

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 18 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, T., Yao, P., Gao, H. et al. Al2O3-Flower Anchoring Pd Catalyst for Acetylene Selective Hydrogenation: A Compartmentalizing Strategy Promotes Metal Dispersion and Maintains Stability. Catal Lett (2024). https://doi.org/10.1007/s10562-024-04693-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10562-024-04693-z

Keywords

Navigation