Skip to main content
Log in

Catalytic Performance of Novel Hierarchical Porous Flower-Like NiCo2O4 Supported Pd in Lean Methane Oxidation

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

In this work, NiCo2O4 with a hierarchical porous flower-like structure was fabricated and used as catalyst support for Pd nanoparticles. The NiCo2O4 was composed of porous nanoplates without overlapping, and the Pd nanoparticles were uniformly distributed on these nanoplates. Pd–NiCo2O4 with the Pd loading of 2.0 wt% showed extremely high activity and stability, methane (1.0% CH4/Air) can be totally oxidized at 330 °C and the T90 is 309 °C, which is much lower than that of pure NiCo2O4 (T90 = 405 °C). At wet condition with the presence of 10 vol% water vapor, the catalytic activity was still acceptable with the T90 of 366 °C, and no activity decrease or permanent damage for the catalyst was observed after 35 h reaction, showing high stability. A series of techniques including TEM, SEM, XRD, H2-TPR, BET and especially quasi in situ XPS combined with in situ MS were used to characterize the catalysts and investigate the catalysis mechanism. Two pathways of CHO evolution were proved by the quasi in situ XPS and in situ MS results: OCHO intermediate dehydrogenation pathway at lower temperature and CO oxidation pathway of CHO at higher temperature.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Lelieveld J, Crutzen PJ, Dentener FJ (1998) Changing concentration, lifetime and climate forcing of atmospheric methane. Tellus Ser B 50:128–150. https://doi.org/10.1034/j.1600-0889.1998.t01-1-00002.x

    Article  Google Scholar 

  2. Ju Y, Sun Y, Sa Z et al (2016) A new approach to estimate fugitive methane emissions from coal mining in China. Sci Total Environ 543:514–523. https://doi.org/10.1016/j.scitotenv.2015.11.024

    Article  CAS  PubMed  Google Scholar 

  3. Nisbet EG, Dlugokencky EJ, Manning MR et al (2016) Rising atmospheric methane: 2007–2014 growth and isotopic shift. Global Biogeochem Cycles 30:1356–1370. https://doi.org/10.1002/2016GB005406

    Article  CAS  Google Scholar 

  4. National Development and Reform Commission (2012) Second national communication on climate change of the People’s Republic of China. National Development and Reform Commission, Beijing

    Google Scholar 

  5. Yang Z, Grace JR, Lim CJ, Zhang L (2011) Combustion of low-concentration coal bed methane in a fluidized bed. Energy Fuels 25:975–980. https://doi.org/10.1021/ef101573y

    Article  CAS  Google Scholar 

  6. Kalantar Neyestanaki A, Klingstedt F, Salmi T, Murzin DY (2004) Deactivation of postcombustion catalysts, a review. Fuel 83:395–408. https://doi.org/10.1016/j.fuel.2003.09.002

    Article  CAS  Google Scholar 

  7. Venezia AM, Di Carlo G, Pantaleo G et al (2009) Oxidation of CH4 over Pd supported on TiO2-doped SiO2: effect of Ti(IV) loading and influence of SO2. Appl Catal B 88:430–437

    Article  CAS  Google Scholar 

  8. Corro G, Cano C, Fierro JLG (2010) A study of Pt–Pd/γ-Al2O3 catalysts for methane oxidation resistant to deactivation by sulfur poisoning. J Mol Catal A 315:35–42

    Article  CAS  Google Scholar 

  9. Cargnello M, Jaen JJD, Garrido JCH et al (2012) Exceptional activity for methane combustion over modular Pd@CeO2 subunits on functionalized Al2O3. Science 337:713–717. https://doi.org/10.1126/science.1222887

    Article  CAS  PubMed  Google Scholar 

  10. Eguchi K, Arai H (2001) Low temperature oxidation of methane over Pd-based catalysts—effect of support oxide on the combustion activity. Appl Catal A 222:359–367. https://doi.org/10.1016/S0926-860X(01)00843-2

    Article  CAS  Google Scholar 

  11. Hu L, Peng Q, Li Y (2008) Selective synthesis of Co3O4 nanocrystal with different shape and crystal plane effect on catalytic property for methane combustion. J Am Chem Soc 130:16136–16137. https://doi.org/10.1021/ja806400e

    Article  CAS  PubMed  Google Scholar 

  12. Barbato PS, Di Benedetto A, Di Sarli V et al (2012) High-pressure methane combustion over a perovskyte catalyst. Ind Eng Chem Res 51:7547–7558. https://doi.org/10.1021/ie201736p

    Article  CAS  Google Scholar 

  13. Barbato PS, Di Sarli V, Landi G, Di Benedetto A (2015) High pressure methane catalytic combustion over novel partially coated LaMnO3-based monoliths. Chem Eng J 259:381–390. https://doi.org/10.1016/j.cej.2014.07.123

    Article  CAS  Google Scholar 

  14. Di Benedetto A, Landi G, Di Sarli V et al (2012) Methane catalytic combustion under pressure. Catal Today 197:206–213. https://doi.org/10.1016/j.cattod.2012.08.032

    Article  CAS  Google Scholar 

  15. Shao C, Li W, Lin Q et al (2017) Low temperature complete combustion of lean methane over cobalt-nickel mixed-oxide catalysts. Energy Technol 5:604–610. https://doi.org/10.1002/ente.201600402

    Article  CAS  Google Scholar 

  16. Yashnik SA, Surovtsova TA, Ishchenko AV et al (2016) Structure and properties of Pd–Mn hexaaluminate catalysts modified with platinum for the high-temperature oxidation of methane. Kinet Catal 57:528–539

    Article  CAS  Google Scholar 

  17. Schwartz WR, Pfefferle LD (2012) Combustion of methane over palladium-based catalysts: support interactions. J Phys Chem C 116:8571–8578. https://doi.org/10.1021/jp2119668

    Article  CAS  Google Scholar 

  18. Murata K, Mahara Y, Ohyama J et al (2017) The metal-support interaction concerning the particle size effect of Pd/Al2O3 on methane combustion. Angew Chem Int Ed 8520:15993–15997. https://doi.org/10.1002/anie.201709124

    Article  CAS  Google Scholar 

  19. Li Z, Hoflund GB (2003) A review on complete oxidation of methane at low temperatures. J Nat Gas Chem 12:153–160

    CAS  Google Scholar 

  20. Li Z, Hoflund GB (1999) Catalytic oxidation of methane over Pd/Co3O4. React Kinet Catal Lett 66:367–374. https://doi.org/10.1007/BF02475814

    Article  CAS  Google Scholar 

  21. Kucharczyk B, Tylus W (2008) Effect of washcoat modification with metal oxides on the activity of a monolithic Pd-based catalyst for methane combustion. Catal Today 137:324–328. https://doi.org/10.1016/j.cattod.2008.05.018

    Article  CAS  Google Scholar 

  22. Hu L, Peng Q, Li Y (2011) Low-temperature CH4 catalytic combustion over Pd catalyst supported on Co3O4 nanocrystals with well-defined crystal planes. ChemCatChem 3:868–874. https://doi.org/10.1002/cctc.201000407

    Article  CAS  Google Scholar 

  23. Tao FF, Shan J, Nguyen L et al (2015) Understanding complete oxidation of methane on spinel oxides at a molecular level. Nat Commun 6:7798. https://doi.org/10.1038/ncomms8798

    Article  CAS  PubMed  Google Scholar 

  24. Di Sarli V, Landi G, Lisi L, Di Benedetto A (2017) Ceria-coated diesel particulate filters for continuous regeneration. AIChE J 63(8):3442–3449

    Article  CAS  Google Scholar 

  25. Di Sarli V, Landi G, Lisi L, Saliva A, Di Benedetto A (2016) Catalytic diesel particulate filters with highly dispersed ceria: Effect of the soot-catalyst contact on the regeneration performance. Appl Catal B: Environ 197:116–124

    Article  CAS  Google Scholar 

  26. Xu Q, Kharas KC, Croley BJ, Datye AK (2011) The sintering of supported Pd automotive catalysts. ChemCatChem 3:1004–1014. https://doi.org/10.1002/cctc.201000392

    Article  CAS  Google Scholar 

  27. De Rogatis L, Cargnello M, Gombac V et al (2010) Embedded phases: a way to active and stable catalysts. ChemSusChem 3:24–42

    Article  CAS  PubMed  Google Scholar 

  28. Cargnello M, Wieder NL, Montini T et al (2010) Synthesis of dispersible Pd @ CeO2 core-shell nanostructures by self-assembly. J Am Chem Soc 132:1402–1409. https://doi.org/10.1039/b916035c.(20)

    Article  CAS  PubMed  Google Scholar 

  29. Bakhmutsky K, Wieder NL, Cargnello M et al (2012) A versatile route to core-shell catalysts: synthesis of dispersible M@oxide (M = Pd, Pt; oxide = TiO2, ZrO2) nanostructures by self-assembly. ChemSusChem 5:140–148. https://doi.org/10.1002/cssc.201100491

    Article  CAS  PubMed  Google Scholar 

  30. Lee Y, Garcia MA, Frey Huls NA, Sun S (2010) Synthetic tuning of the catalytic properties of Au–Fe3O4 nanoparticles. Angew Chem 122:1293–1296. https://doi.org/10.1002/ange.200906130

    Article  Google Scholar 

  31. Gu H, Yang Z, Gao J et al (2005) Heterodimers of nanoparticles: formation at a liquid–liquid interface and particle-specific surface modification by functional molecules. J Am Chem Soc 127:34–35

    Article  CAS  PubMed  Google Scholar 

  32. Huang Q, Li W, Lin Q et al (2016) A review of significant factors in the synthesis of hetero-structured dumbbell-like nanoparticles. Chinese J Catal 37:681–691. https://doi.org/10.1016/S1872-2067(15)61069-5

    Article  CAS  Google Scholar 

  33. Huang Q, Li W, Lin Q et al (2017) Catalytic performance of Pd-NiCo2O4/SiO2 in lean methane combustion at low temperature. J Energy Inst. https://doi.org/10.1016/j.joei.2017.05.008

    Article  Google Scholar 

  34. Lee JH, Trimm DL (1995) Catalytic combustion of methane. Fuel Process Technol 42:339–359

    Article  CAS  Google Scholar 

  35. Li L, Cheah Y, Ko Y et al (2013) The facile synthesis of hierarchical porous flower-like NiCo2O4 with superior lithium storage properties. J Mater Chem A 1:10935–10941. https://doi.org/10.1039/c3ta11549f

    Article  CAS  Google Scholar 

  36. Luo L, Tang X, Wang W et al (2013) Methyl radicals in oxidative coupling of methane directly confirmed by synchrotron VUV photoionization mass spectroscopy. Sci Rep 3:1–7. https://doi.org/10.1038/srep01625

    Article  CAS  Google Scholar 

  37. Qi F, Yang R, Yang B et al (2006) Isomeric identification of polycyclic aromatic hydrocarbons formed in combustion with tunable vacuum ultraviolet photoionization. Rev Sci Instrum 77:84101. https://doi.org/10.1063/1.2234855

    Article  CAS  Google Scholar 

  38. Wang Y, Zhu Y, Zhou Z et al (2016) Pyrolysis study on solid fuels: from conventional analytical methods to synchrotron vacuum ultraviolet photoionization mass spectrometry. Energy Fuels 30:1534–1543

    Article  CAS  Google Scholar 

  39. Zhu Y, Chen X, Wang Y et al (2015) Online study on the catalytic pyrolysis of bituminous coal over HUSY and HZSM-5 with photoionization time-of-flight mass spectrometry. Energy Fuels 30:1598–1604

    Article  CAS  Google Scholar 

  40. Fujimoto K-I, Ribeiro FH, Avalos-Borja M, Iglesia E (1998) Structure and reactivity of PdOx/ZrO2 catalysts for methane oxidation at low temperatures. J Catal 179:431–442. https://doi.org/10.1006/jcat.1998.2178

    Article  CAS  Google Scholar 

  41. Pi D, Li WZ, Lin QZ et al (2016) Highly active and thermally stable supported Pd@SiO2 core-shell catalyst for catalytic methane combustion. Energy Technol 4:943–949. https://doi.org/10.1002/ente.201600006

    Article  CAS  Google Scholar 

  42. Bitter JH, Seshan K, Lercher JA (2000) On the contribution of X-ray absorption spectroscopy to explore structure and activity relations of Pt/ZrO2 catalysts for CO2/CH4 reforming. Top Catal 10:295–305

    Article  CAS  Google Scholar 

  43. Sekizawa K, Widjaja H, Maeda S et al (2000) Low temperature oxidation of methane over Pd/SnO2 catalyst. Appl Catal A 200:211–217. https://doi.org/10.1016/S0926-860X(00)00634-7

    Article  CAS  Google Scholar 

  44. Yamamoto H, Uchida H (1998) Oxidation of methane over Pt and Pd supported on alumina in lean-burn natural-gas engine exhaust. Catal Today 45:147–151. https://doi.org/10.1016/S0920-5861(98)00265-X

    Article  CAS  Google Scholar 

  45. Piqueras C, Bottini S, Damiani D (2006) Sunflower oil hydrogenation on Pd/Al2O3 catalysts in single-phase conditions using supercritical propane. Appl Catal A 313:177–188. https://doi.org/10.1016/j.apcata.2006.07.023

    Article  CAS  Google Scholar 

  46. Anderson JR (1975) Structure of metallic catalysts. Academic Press, New York

    Google Scholar 

  47. Liang D, Gao J, Wang J et al (2009) Selective oxidation of glycerol in a base-free aqueous solution over different sized Pt catalysts. Catal Commun 10:1586–1590. https://doi.org/10.1016/j.catcom.2009.04.023

    Article  CAS  Google Scholar 

  48. Lambert S, Job N, D’Souza L et al (2009) Synthesis of very highly dispersed platinum catalysts supported on carbon xerogels by the strong electrostatic adsorption method. J Catal 261:23–33. https://doi.org/10.1016/j.jcat.2008.10.014

    Article  CAS  Google Scholar 

  49. Yuranov I, Moeckli P, Suvorova E et al (2003) Pd/SiO2 catalysts: synthesis of Pd nanoparticles with the controlled size in mesoporous silicas. J Mol Catal A 192:239–251. https://doi.org/10.1016/S1381-1169(02)00441-7

    Article  CAS  Google Scholar 

  50. Hoffmann M, Kreft S, Georgi G et al (2015) Improved catalytic methane combustion of Pd/CeO2 catalysts via porous glass integration. Appl Catal B 179:313–320

    Article  CAS  Google Scholar 

  51. Schwartz WR, Ciuparu D, Pfefferle LD (2012) Combustion of methane over palladium-based catalysts: catalytic deactivation and role of the support. J Phys Chem C 116:8587–8593. https://doi.org/10.1021/jp212236e

    Article  CAS  Google Scholar 

  52. Xu W, Liu X, Ren J et al (2010) A novel mesoporous Pd/cobalt aluminate bifunctional catalyst for aldol condensation and following hydrogenation. Catal Commun 11:721–726. https://doi.org/10.1016/j.catcom.2010.02.002

    Article  CAS  Google Scholar 

  53. Liotta LF, Di Carlo G, Pantaleo G et al (2007) Pd/Co3O4 catalyst for CH4 emissions abatement: study of SO2 poisoning effect. Top Catal 42:425–428. https://doi.org/10.1007/s11244-007-0218-7

    Article  CAS  Google Scholar 

  54. Gou Y, Liang X, Chen B (2013) Porous Ni–Co bimetal oxides nanosheets and catalytic properties for CO oxidation. J Alloys Compd 574:181–187. https://doi.org/10.1016/j.jallcom.2013.04.053

    Article  CAS  Google Scholar 

  55. Trivedi S, Prasad R (2017) Selection of cobaltite and effect of preparation method of NiCo2O4 for catalytic oxidation of CO–CH4 mixture. Asia-Pacific J Chem Eng 12:440–453. https://doi.org/10.1002/apj.2087

    Article  CAS  Google Scholar 

  56. Luo MF, Hou ZY, Yuan XX, Zheng XM (1998) Characterization study of CeO2 supported Pd catalyst for low-temperature carbon monoxide oxidation. Catal Lett 50:205–209. https://doi.org/10.1023/A:1019023220271

    Article  CAS  Google Scholar 

  57. Klissurski D, Uzunova E (1991) Synthesis of nickel cobaltite spinel from coprecipitated nickel-cobalt hydroxide carbonate. Chem Mater 3:1060–1063

    Article  CAS  Google Scholar 

  58. Marco JF, Gancedo JR, Gracia M et al (2001) Cation distribution and magnetic structure of the ferrimagnetic spinel NiCo2O4. J Mater Chem 11:3087–3093

    Article  CAS  Google Scholar 

  59. Ciuparu D, Bozon-Verduraz F, Pfefferle L (2002) Oxygen exchange between palladium and oxide supports in combustion catalysts. J Phys Chem B 106:3434–3442. https://doi.org/10.1021/jp013577r

    Article  CAS  Google Scholar 

  60. Liang J, Fan Z, Chen S et al (2014) Hierarchical NiCO2O4nanosheets@halloysite nanotubes with ultrahigh capacitance and long cycle stability as electrochemical pseudocapacitor materials. Chem Mater 26:4354–4360. https://doi.org/10.1021/cm500786a

    Article  CAS  Google Scholar 

  61. Zhang S, Shan J, Nie L et al (2016) In situ studies of surface of NiFe2O4 catalyst during complete oxidation of methane. Surf Sci 648:156–162. https://doi.org/10.1016/j.susc.2015.12.011

    Article  CAS  Google Scholar 

  62. Luciu I, Bartali R, Laidani N (2012) Influence of hydrogen addition to an Ar plasma on the structural properties of TiO2–x thin films deposited by RF sputtering. J Phys D 45:345302

    Article  CAS  Google Scholar 

  63. Chin Y-H, Buda C, Neurock M, Iglesia E (2013) Consequences of metal–oxide interconversion for C–H bond activation during CH4 reactions on Pd catalysts. J Am Chem Soc 135:15425–15442

    Article  CAS  PubMed  Google Scholar 

  64. Mudiyanselage K, Senanayake SD, Feria L et al (2013) Importance of the metal–oxide interface in catalysis: in situ studies of the water–gas shift reaction by ambient-pressure X-ray photoelectron spectroscopy. Angew Chem Int Ed 52:5101–5105

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (No. 51376171), the Science and Technological Fund of Anhui Province for Outstanding Youth (1508085J01) and the National Key Technology R&D Program of China (No. 2015BAD15B06).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wenzhi Li or Qizhao Lin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Q., Li, W., Lei, Y. et al. Catalytic Performance of Novel Hierarchical Porous Flower-Like NiCo2O4 Supported Pd in Lean Methane Oxidation. Catal Lett 148, 2799–2811 (2018). https://doi.org/10.1007/s10562-018-2397-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-018-2397-1

Keywords

Navigation