Skip to main content
Log in

Hydrogenation of 5-Hydroxymethyl Furfural (HMF) Using Noble Metal-Free Copper-Molybdenum-Based Catalyst

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

A Molybdate intercalated copper–aluminium hydrotalcite (CAM) material was synthesised using a simple co-precipitation technique, employing varying amounts of molybdate anions. Powder XRD, FT-IR, and TEM studies revealed the presence of molybdate species in the interlayer spaces and the formation of layered hydrotalcite structures. The resultant CAM materials have been explored for the hydrogenation of 5-hydroxymethyl furan using water as a green solvent in liquid-phase conditions under a hydrogen atmosphere. The catalyst showed around 60% conversion with the selective formation of 2,5-bishydroxymethyl furan (BHMF). The activity remains intact for five cycles. The increase in reaction temperature enhanced the conversion level to 80%, with the cost of a decrease in the selectivity of BHMF to 74%. The uniform dispersion of copper-molybdenum and strong interaction in the presence of a hydrogen atmosphere favoured better activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Scheme 1
Scheme 2
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. He Y, Deng L, Lee Y, Li K, Lee JM (2022) A review on the critical role of H2 donor in the selective hydrogenation of 5 Hydroxymethylfurfural. Chemsuschem. https://doi.org/10.1002/cssc.202200232

    Article  PubMed  PubMed Central  Google Scholar 

  2. Salameh T, Sayed ET, Abdelkareem MA, Olabi AG, Rezk H (2021) Optimal selection and management of hybrid renewable energy system: Neom city as a case study. Energy Convers Manag. https://doi.org/10.1016/j.enconman.2021.114434

    Article  Google Scholar 

  3. Zhao J, Patwary AK, Qayyum A, Alharthi M, Bashir F, Mohsin M, Abbas Q (2022) The determinants of renewable energy sources for the fueling of green and sustainable economy. Energy. https://doi.org/10.1016/j.energy.2021.122029

    Article  Google Scholar 

  4. Panda AK, Singh RK, Mishra DK (2010) Thermolysis of waste plastics to liquid fuel: a suitable method for plastic waste management and manufacture of value added products—A world prospective. Renew Sustain Energy Rev. https://doi.org/10.1016/j.rser.2009.07.005

    Article  Google Scholar 

  5. Kong X, Zhu Y, Fang Z, Kozinski JA, Butler IS, Xu L, Wei X (2018) Catalytic conversion of 5-hydroxymethylfurfural to some value-added derivatives. Green Chem. https://doi.org/10.1039/C8GC00234G

    Article  Google Scholar 

  6. Saha B, Abu-Omar MM (2014) Green Chem 16:24–38

    Article  CAS  Google Scholar 

  7. Albonetti S, Hu C, Saravanamurugan S (2022) Preface to special issue on green conversion of HMF. Chemsuschem. https://doi.org/10.1002/cssc.202201057

    Article  PubMed  PubMed Central  Google Scholar 

  8. Zhang Z, Liu C, Liu D, Shang Y, Yin X, Zhang P, Gui J (2020) Hydrothermal carbon-supported Ni catalysts for selective hydrogenation of 5-hydroxymethylfurfural toward tunable products. J Mater Sci. https://doi.org/10.1007/s10853-020-05052-0

    Article  PubMed  PubMed Central  Google Scholar 

  9. Lima S, Chadwick D, Hellgardt K (2017) RSC Adv 7:31401–31407

    Article  CAS  Google Scholar 

  10. Li W, Fan G, Yang L, Li F (2017) Highly efficient synchronized production of phenol and 2,5-dimethylfuran through a bimetallic Ni–Cu catalyzed dehydrogenation–hydrogenation coupling process without any external hydrogen and oxygen supply. Green Chem 19:4353–4363. https://doi.org/10.1039/C7GC01387F

    Article  CAS  Google Scholar 

  11. Luo J, Monai M, Wang C, Lee JD, Duchoň T, Dvořák F, Gorte RJ (2017) Unraveling the surface state and composition of highly selective nanocrystalline Ni–Cu alloy catalysts for hydrodeoxygenation of HMF. Catal Sci Technol. https://doi.org/10.1039/C6CY02647H

    Article  Google Scholar 

  12. Durant-Pinchard M (1986) Fr. Patent Appl. 2556344, 1985. In: Chem. Abstr, vol. 104, p. 131944z.

  13. Matsumoto I, Nakagawa K, Horiuchi K (1973) Jpn Kokai 73:763

    Google Scholar 

  14. Timko JM, Cram DJ (1974) J Am Chem Soc 96:7159–7159

    Article  CAS  Google Scholar 

  15. Sanborn AJ, Bloom PD (2008) US Pat 7579490

  16. Moreau C, Belgacem MN, Gandini A (2004) Top Catal 27:11–30

    Article  CAS  Google Scholar 

  17. Kieber RJ, Silver SA, Kennemur JG (2017) Stereochemical effects on the mechanical and viscoelastic properties of renewable polyurethanes derived from isohexides and hydroxymethylfurfural. Polym Chem. https://doi.org/10.1039/C7PY00949F

    Article  Google Scholar 

  18. Kim J, Bathula HB, Yun S, Jo Y, Lee S, Baik JH, Suh YW (2021) Hydrogenation of 5-hydroxymethylfurfural into 2,5-bis (hydroxymethyl) furan over mesoporous Cu–Al2O3 catalyst: from batch to continuous processing. J Ind Eng Chem. https://doi.org/10.1016/j.jiec.2021.06.039

    Article  Google Scholar 

  19. Zhang J, Wang T, Tang X, Peng L, Wei J, Lin L (2018) Bioresour 13:7137–7154

    Article  Google Scholar 

  20. Lalanne L, Nyanhongo GS, Guebitz GM, Pellis A (2021) Biotechnological production and high potential of furan-based renewable monomers and polymers. Biotechnol Adv. https://doi.org/10.1016/j.biotechadv.2021.107707

    Article  PubMed  Google Scholar 

  21. Cao Q, Liang W, Guan J, Wang L, Qu Q, Zhang X, Wang X, Mu X (2014) Catalytic synthesis of 2,5-Bis-Methoxymethylfuran: a promising cetane number improver for diesel. Appl Catal A Gen. https://doi.org/10.1016/j.apcata.2014.05.003

    Article  Google Scholar 

  22. Aricó F (2021) Synthetic approaches to stable bio-based diol. Pure Appl Chem. https://doi.org/10.1515/pac-2021-0117

    Article  Google Scholar 

  23. Jiang Y, Woortman AJJ, van Ekenstein GL, Petrovic D, Loos K (2014) Enzymatic synthesis of biobased polyesters using 2,5-Bis(hydroxymethyl)furan as the building block. Biomacromol. https://doi.org/10.1021/bm500340w

    Article  Google Scholar 

  24. Liu Z, Arnold FH (2021) Curr Opin Biotechnol 69:43–51

    Article  CAS  PubMed  Google Scholar 

  25. Alamillo R, Tucker M, Chia M, Pagán-Torres Y, Dumesic J (2012) The selective hydrogenation of biomass-derived 5-hydroxymethylfurfural using heterogeneous catalysts. Green Chem. https://doi.org/10.1039/C2GC35039D

    Article  Google Scholar 

  26. Vikanova KV, Chernova MS, Redina EA, Kapustin GI, Tkachenko OP, Kustov LM (2021) Heterogeneous additive-free highly selective synthesis of 2,5-bis (hydroxymethyl) furan over catalysts with ultra-low Pt content. J Chem Technol Biotechnol. https://doi.org/10.1002/jctb.6785

    Article  Google Scholar 

  27. Balakrishnan M, Sacia ER, Bell AT (2012) Etherification and reductive etherification of 5-(hydroxymethyl) furfural: 5-(alkoxymethyl) furfurals and 2,5-bis (alkoxymethyl) furans as potential bio-diesel candidates. Green Chem. https://doi.org/10.1039/C2GC35102A

    Article  Google Scholar 

  28. Bertini I, Gray HB, Lippard SJ, Valentine JS (1994) Bioinorganic chemistry. University Science Books

  29. Maru MS, Patel P, Khan NH, Shukla RS (2020) Copper Hydrotalcite (Cu-HT) as an efficient catalyst for the hydrogenation of CO2 to formic acid. Curr Catal. https://doi.org/10.2174/2211544709999200413110411

    Article  Google Scholar 

  30. Hernández PS, Anzures FM, Hernández RP, Morales FT, Romo MAR (2020) Catal Today 349:48–56. https://doi.org/10.1016/j.cattod.2018.06.034

    Article  CAS  Google Scholar 

  31. Welton T (2015) Solvents and sustainable chemistry. Proc Math Phys Eng Sci. https://doi.org/10.1098/rspa.2015.0502

    Article  PubMed  PubMed Central  Google Scholar 

  32. Ren S, Ye XP, Borole AP (2017) Separation of chemical groups from bio-oil water-extract via sequential organic solvent extraction. J Anal Appl Pyrolysis. https://doi.org/10.1016/j.jaap.2017.01.004

    Article  Google Scholar 

  33. Kruse A, Dahmen N (2015) Water–A magic solvent for biomass conversion. J Supercrit Fluids. https://doi.org/10.1016/j.supflu.2014.09.038

    Article  Google Scholar 

  34. Cantero DA, Tapia ÁS, Bermejo MD, Cocero MJ (2015) Pressure and temperature effect on cellulose hydrolysis in pressurized water. J Chem Eng. https://doi.org/10.1016/j.cej.2015.04.076

    Article  Google Scholar 

  35. Chatterjee M, Ishizaka T, Kawanami H (2014) Selective hydrogenation of 5-hydroxymethylfurfural to 2,5-bis-(hydroxymethyl) furan using Pt/MCM-41 in an aqueous medium: a simple approach. Green Chem. https://doi.org/10.1039/C4GC01127A

    Article  Google Scholar 

  36. Kim YH, Hwang SK, Kim JW, Lee YS (2014) Zirconia-supported ruthenium catalyst for efficient aerobic oxidation of alcohols to aldehydes. Ind Eng Chem Res. https://doi.org/10.1021/ie5009794

    Article  Google Scholar 

  37. Tamura M, Tokonami K, Nakagawa Y, Tomishige K (2013) Rapid synthesis of unsaturated alcohols under mild conditions by highly selective hydrogenation. Chem Commun. https://doi.org/10.1039/C3CC41526K

    Article  Google Scholar 

  38. Tucker MH, Alamillo R, Crisci AJ, Gonzalez GM, Scott SL, Dumesic JA (2013). ACS Sustain Chem Eng. https://doi.org/10.1021/sc400044d

    Article  Google Scholar 

  39. Fulignati S, Antonetti C, Licursi D, Pieraccioni M, Wilbers E, Heeres HJ, Galletti AMR (2019) Insight into the hydrogenation of pure and crude HMF to furan diols using Ru/C as catalyst. Appl Catal A: Gen. https://doi.org/10.1016/j.apcata.2019.04.007

  40. Nimisha NP, Narendranath SB, Sakthivel A (2024) In-situ preparation of a nickel-oxy-hydroxide decorated ITQ-2 composite: a hydrodeoxygenation catalyst. Chem Commun. https://doi.org/10.1039/D3CC05427F

    Article  Google Scholar 

  41. Redina EA, Vikanova KV, Kapustin GI (2020) Monometallic copper catalysts for the hydrogenation of 5-hydroxymethylfurfural. Russ J Phys Chem A. https://doi.org/10.1134/S0036024420120250

    Article  Google Scholar 

  42. Yang L, Ma L, Chen G, Liu J, Tian ZQ (2010) Ultrasensitive SERS detection of TNT by imprinting molecular recognition using a new type of stable substrate. Chem Eur J. https://doi.org/10.1002/chem.201001053

    Article  PubMed  Google Scholar 

  43. Rannulu NS, Rodgers MT (2009) Noncovalent interactions of Ni+ with N-donor ligands (pyridine, 4, 4′-dipyridyl, 2, 2′-dipyridyl, and 1, 10-phenanthroline): collision-induced dissociation and theoretical studies. J Phys Chem A. https://doi.org/10.1021/jp8112045

    Article  PubMed  Google Scholar 

  44. Song Y, Janjua MRSA, Jamil S, Haroon M, Nasir S, Nisar Z, Batool A (2014) The NLO properties of hybrid materials based on molybdate/hexamolybdate derivatives: a theoretical perspective for electro-optic modulation. Synth Met. https://doi.org/10.1016/j.synthmet.2014.10.042

    Article  Google Scholar 

  45. Neethu PP, Aswin P, Sreenavya A, Nimisha S, Aswathi PS, Sakthivel A (2022) Ruthenium on α-Ni(OH)2 as potential catalyst for anisole hydrotreating and cinnamyl alcohol oxidation. React Kinet Mech Catal. https://doi.org/10.1007/s11144-022-02211-z

    Article  Google Scholar 

  46. Dubey A, Rives V, Kannan S (2002) Catalytic hydroxylation of phenol over ternary hydrotalcites containing Cu, Ni and Al. J Mol Catal A Chem. https://doi.org/10.1016/S1381-1169(01)00360-0.

  47. Belhekar AA, Ayyappan S, Ramaswamy AV (1994) FT-IR studies on the evolution of different phases and their interaction in ferric molybdate—molybdenum trioxide catalysts. J Chem Technol Biotechnol. https://doi.org/10.1002/jctb.280590413

    Article  Google Scholar 

  48. Neethu PP, Sreenavya A, Sakthivel A (2021) Molybdate stabilized magnesium‐iron hydrotalcite materials: potential catalysts for isoeugenol to vanillin and olefin epoxidation. Appl Catal A: Gen. https://doi.org/10.1016/j.apcata.2021.118292

  49. Sreenavya A, Baskaran T, Ganesh V, Sharma D, Kulal N, Sakthivel A (2018) Framework of ruthenium-containing nickel hydrotalcite-type material: preparation, characterisation, and its catalytic application. RSC Adv 8:25248–25257

    Article  CAS  Google Scholar 

  50. Sreenavya A, Aswin P, Ganesh V, Venkatesha NJ, Sakthivel A (2022) Facile water-free synthesis of noble metal-containing hydrotalcites-derived materials and their application for hydrotreatment of anisole. Mater Today Sustain. https://doi.org/10.1016/j.mtsust.2022.100153

    Article  Google Scholar 

  51. Khromova SA, Smirnov AA, Bulavchenko OA, Saraev AA, Kaichev VV, Reshetnikov SI, Yakovlev VA (2014) Anisole hydrodeoxygenation over Ni–Cu bimetallic catalysts: The effect of Ni/Cu ratio on selectivity. Appl Catal A-Gen. https://doi.org/10.1016/j.apcata.2013.10.046

    Article  Google Scholar 

  52. Kannan S, Dubey A, Knozinger H (2005) Synthesis and characterization of CuMgAl ternary hydrotalcites as catalysts for the hydroxylation of phenol. J Catal. https://doi.org/10.1016/j.jcat.2005.01.032

    Article  Google Scholar 

  53. Baskaran T, Kumaravel R, Christopher J, Sakthivel A (2013) Silicate anion-stabilized layered magnesium–aluminium hydrotalcite. RSC Adv. https://doi.org/10.1039/C3RA42563K

    Article  Google Scholar 

  54. Thommes M, Kaneko K, Neimark AV, Olivier JP, Rodriguez-Reinoso F, Rouquerol J, Sing KS (2015) Pure Appl Chem 87:1051–1069

    Article  CAS  Google Scholar 

  55. Carriazo D, Domingo C, Martin C, Rives V (2006) Structural and texture evolution with temperature of layered double hydroxides intercalated with paramolybdate anions. Inorg Chem. https://doi.org/10.1021/ic0508674

    Article  PubMed  Google Scholar 

  56. Dou J, Bao Z, Yu F (2018) Mesoporous Ni(OH)2/CeNixOy composites derived Ni/CeNixOy catalysts for dry reforming of methane. ChemCatChem. https://doi.org/10.1002/cctc.201701073

  57. Masalska A (2008) Hydrogenation of aromatic compounds during gas oil hydrodewaxing: I. Effect of ruthenium content and method of nickel catalyst preparation. Catal Today. https://doi.org/10.1016/j.cattod.2008.01.009

  58. Zhou X, Feng Z, Guo W, Liu J, Li R, Chen R, Huang J (2019) Hydrogenation and hydrolysis of furfural to furfuryl alcohol, cyclopentanone, and cyclopentanol with a heterogeneous copper catalyst in water. Ind Eng Chem Res. https://doi.org/10.1021/acs.iecr.8b06217

    Article  Google Scholar 

  59. Vishwakarma R, Gadipelly C, Nakhate A, Deshmukh G, Mannepalli LK (2020) Copper supported MgAl hydrotalcite derived oxide catalyst for enol carbamates synthesis via CH bond activation of formamides. Catal Commun. https://doi.org/10.1016/j.catcom.2020.106150

    Article  Google Scholar 

  60. Mondal P, Sinha A, Salam N, Roy AS, Jana NR, Islam SM (2013) Enhanced catalytic performance by copper nanoparticle–graphene based composite. RSC Adv 3:5615–5623. https://doi.org/10.1039/C3RA23280H

    Article  CAS  Google Scholar 

  61. Swadźba-Kwaśny M, Chancelier L, Ng S, Manyar HG, Hardacre C, Nockemann P (2012) Facile in situ synthesis of nanofluids based on ionic liquids and copper oxide clusters and nanoparticles. Dalton Trans 41:219–227. https://doi.org/10.1039/C1DT11578B

    Article  PubMed  Google Scholar 

  62. Baskaran T, Kumaravel R, Christopher J, Ajithkumar TG, Sakthivel A (2015) An environmentally friendly route for grafting of molybdenum carbonyl onto a diaminosilane-modified SBA-15 molecular sieve and its catalytic behaviour in olefin epoxidation. New J Chem 39:3758–3764. https://doi.org/10.1039/C4NJ02402H

    Article  CAS  Google Scholar 

  63. Wan W, Jiang Z, Chen JG (2018) A comparative study of hydrodeoxygenation of furfural Over Fe/Pt (111) and Fe/Mo 2 C surfaces. Top Catal 61:439–445. https://doi.org/10.1007/s11244-018-0901-x

    Article  CAS  Google Scholar 

  64. Turkin AA, Makshina EV, Sels BF (2022) Catalytic hydroconversion of 5-HMF to value-added chemicals: insights into the role of catalyst properties and feedstock purity. Chemsuschem. https://doi.org/10.1002/cssc.202200412

    Article  PubMed  Google Scholar 

  65. Zhou C, Zhao J, Yagoub AEA, Ma H, Yu X, Hu J, Liu S (2017) Conversion of glucose into 5-hydroxymethylfurfural in different solvents and catalysts: Reaction kinetics and mechanism. Egypt J Pet. https://doi.org/10.1016/j.ejpe.2016.07.005

    Article  Google Scholar 

  66. Xia H, Xu S, Hu H, An J, Li C (2018) Efficient conversion of 5-hydroxymethylfurfural to high-value chemicals by chemo-and bio-catalysis. RSC Adv 8:30875–30886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Gawade AB, Tiwari MS, Yadav GD (2016) Biobased green process: Selective hydrogenation of 5-hydroxymethylfurfural to 2, 5-dimethyl furan under mild conditions using Pd-Cs2. 5H0. 5PW12O40/K-10 clay. ACS Sustain Chem Eng. https://doi.org/10.1021/acssuschemeng.6b00426

  68. Wang J, Zhao J, Fu J, Miao C, Jia S, Yan P, Huang J (2022) Highly selective hydrogenation of 5-hydroxymethylfurfural to 2, 5-bis (hydroxymethyl) furan over metal-oxide supported Pt catalysts: the role of basic sites. Appl Catal A: Gen. https://doi.org/10.1016/j.apcata.2022.118762

    Article  Google Scholar 

  69. Zelin J, Meyer CI, Duarte HA, Marchi A (2022) A stable and reusable supported copper catalyst for the selective liquid-phase hydrogenation of 5-hydroxymethylfurfural to 2, 5-Bis (hydroxymethyl) furan. Catal. https://doi.org/10.3390/catal12111476

    Article  Google Scholar 

  70. Huang Z, Zeng Z, Zhu X, Zhao W, Lei J, Xu Q, Liu X (2023). Boehmite-supported CuO as a catalyst for catalytic transfer hydrogenation of 5-hydroxymethylfurfural to 2, 5-bis (hydroxymethyl) furan. Front Chem Sci Eng https://doi.org/10.1007/s11705-022-2225-4

Download references

Acknowledgements

The author thanks DST-SERB-CRG (Project No: CRG/2023/001107) for financial support. Neethu P P is grateful to CSIR (File No. 09/1108(0036)/2019-EMR-1) and CUK for the fellowship and Lab facilities. Aswin P is thankful to post metric Scholarship-Kerala (e-grantz), India for his fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Sakthivel.

Ethics declarations

Conflicts of Interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 315 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aswin, P., Kothari, A.C., Neethu, P.P. et al. Hydrogenation of 5-Hydroxymethyl Furfural (HMF) Using Noble Metal-Free Copper-Molybdenum-Based Catalyst. Catal Lett (2024). https://doi.org/10.1007/s10562-024-04674-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10562-024-04674-2

Keywords

Navigation