Skip to main content
Log in

Insight of water oxidation kinetics of BiVO4 photoanode by vapor phase cation exchange method

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Among numerous semiconductors, BiVO4 has a suitable bandgap width, excellent valence band energy level and high activity for visible light water oxidation. It is an important oxygen evolution photocatalyst, but its carrier migration rate is still lower than other semiconductor materials. Therefore, in this paper, transition metal cations such as Fe3+ were selectively exchanged with V5+ in BiVO4 in a high-temperature Ar atmosphere by vapor phase cation exchange method, cationic bonds with strong binding force were formed at the interface between metal elements and catalysts, effectively accelerating bulk to surface charge separation. The adsorption energy and surface oxidation kinetics of the intermediate in the process of water oxidation were enhanced, and the photoelectrochemical properties of the intermediate were effectively improved.

Graphical Abstract

The vapor phase cation exchange between Fe3+ and V5+ of BiVO4 photoanode makes the metal element and the catalyst form a strong cationic bond at the interface, which greatly reduces the charge transport resistance to a certain extent, accelerates the water reaction kinetics, which can not only significantly improve the stability, but also increase the photocurrent density and significantly reduce the starting potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2.
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kudo A, Ueda K, Kato H, Mikami I (1998) Catal Lett 53:229–230

    Article  CAS  Google Scholar 

  2. Sayama K, Nomura A, Zou Z, Abe R, Abe Y, Arakawa H (2003) Chem Commun 23:2908–2909

    Article  Google Scholar 

  3. Kim T-W, Choi K-S (2014) Science 343:990–994

    Article  CAS  PubMed  Google Scholar 

  4. Yang L, Fan D, Li Z, Cheng Y, Yang X, Zhang T (2022) Adv Sustainable Syst 6:2100477

    Article  CAS  Google Scholar 

  5. Li X, Garlisi C, Guan Q, Anwer S, Al-Ali K, Palmisano G, Zheng L (2021) Mater Today 47:75–107

    Article  CAS  Google Scholar 

  6. Fu J, Xu Q, Low J, Jiang C, Yu J (2019) Appl Catal B Environ 243:556–565

    Article  CAS  Google Scholar 

  7. Su T, Shao Q, Qin Z, Guo Z, Wu Z (2018) ACS Catal 8:2253–2276

    Article  CAS  Google Scholar 

  8. Zheng X, Kuang Q, Yan K, Qiu Y, Qiu J, Yang S (2013) ACS Appl Mater Inter 5:11249–11257

    Article  CAS  Google Scholar 

  9. Abdi F-F, Han L, Smets A-H, Zeman M, Dam B, Krol R (2013) Nat Commun 4:2195

    Article  PubMed  Google Scholar 

  10. Li R, Zhang F, Wang D, Yang J, Li M, Zhu J, Zhou X, Han H, Li C (2013) Nat Commun 4:1432

    Article  PubMed  Google Scholar 

  11. Lightcap I-V, Kosel T-H, Kamat P-V (2010) Nano Lett 10:577–583

    Article  CAS  PubMed  Google Scholar 

  12. Lin Y, Zhang K, Chen W, Liu Y, Geng Z, Zeng J, Pan N, Yan L, Wang X, Hou J-G (2010) ACS Nano 4:3033–3038

    Article  CAS  PubMed  Google Scholar 

  13. Nair V, Perkins C-L, Lin Q, Law M (2016) Energ Environ Sci 9:1412–1429

    Article  CAS  Google Scholar 

  14. Zhu J, Fan F, Chen R, An H, Feng Z, Li C (2015) Angew Chem Int Edit 54:9111–9114

    Article  CAS  Google Scholar 

  15. Rajeshwar K, Tacconi NR, Chenthamarakshan C-R (2001) Chem Mater 13:2765–2782

    Article  CAS  Google Scholar 

  16. Zhu S-S, Zhang Y, Zou Y, Guo S-Y, Liu H, Wang J-J, Braun A (2021) J Phys Chem C 125:15890–15898

    Article  CAS  Google Scholar 

  17. Ding J-R, Kim K-S (2018) Chem Eng J 334:1650–1656

    Article  CAS  Google Scholar 

  18. Chatchai P, Murakami Y, Kishioka S, Nosaka A-Y, Nosaka Y (2009) Electrochim Acta 54:1147–1152

    Article  CAS  Google Scholar 

  19. Kim J-H, Yoon J-W, Kim T-H, Jo Y-M, Kim J-S, Jeong S-Y, Lee J-H (2021) Chem Eng J 425:131496

    Article  CAS  Google Scholar 

  20. Nomellini C, Polo A, Mesa C-A, Pastor E, Marra G, Grigioni I, Dozzi M-V, Giménez S, Selli E (2023) ACS Appl Mater Inter 15:52436–52447

    CAS  Google Scholar 

  21. Zhang J, Huang Y, Lu X, Yang J, Tong Y (2021) ACS Sustain Chem Eng 9:8306–8314

    Article  CAS  Google Scholar 

  22. Wang S, Cui D, Hao W, Du Y (2022) Energ Fuel 36:11394–11403

    Article  CAS  Google Scholar 

  23. Meng L, Lv Z, Xu W, Tian W, Li L (2023) Adv Sci 10:2206729

    Article  CAS  Google Scholar 

  24. Parmar K-P, Kang H-J, Bist A, Dua P, Jang J-S, Lee J-S (2012) Chemsuschem 5:1926–1934

    Article  CAS  PubMed  Google Scholar 

  25. He B, Li Z, Zhao D, Liu H, Zhong Y, Ning J, Zhang Z, Wang Y, Hu Y (2018) ACS Appl Nano Mater 1:2589–2599

    Article  CAS  Google Scholar 

  26. Xia T, Chen M, Xiao L, Fan W, Mao B, Xu D, Guan P, Zhu J, Shi W (2018) J Taiwan Inst Chem E 93:582–589

    Article  CAS  Google Scholar 

  27. Lee J-M, Baek J-H, Gill T-M, Shi X, Lee S, Cho I-S, Jung H-S, Zheng X-A (2019) J Mater Chem A 7:9019–9024

    Article  CAS  Google Scholar 

  28. Shim S-G, Tan J, Lee H, Park J, Yun J, Park Y-S, Kim K, Lee J, Moon J (2022) Chem Eng J 430:133061

    Article  CAS  Google Scholar 

  29. Zhang Y, Han W, Ding L, Fang F, Xie Z, Liu X, Chang K (2022) Catal Sci Technol 12:4040–4049

    Article  CAS  Google Scholar 

  30. Zhang B, Zhang H, Wang Z, Zhang X, Qin X, Dai Y, Liu Y, Wang P, Li Y, Huang B (2017) Appl Catal B Environ 211:258–265

    Article  CAS  Google Scholar 

  31. Polo A, Dozzi M-V, Grigioni I, Lhermitte C, Plainpan N, Moretti L, Cerullo G, Sivula K, Selli E (2022) Solar RRL 6:2200349

    Article  CAS  Google Scholar 

  32. Nawaz A, Khan A, Ali N, Mao P, Gao X, Ali N, Bilal M, Khan H (2022) Chemosphere 289:133121

    Article  CAS  PubMed  Google Scholar 

  33. Wang S, He T, Chen P, Du A, Ostrikov K, Huang W, Wang L (2020) Adv Mater 32:2070198

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of Jiangsu Province (Grant No. BK20210308), the Basic Science Center Program for Ordered Energy Conversion of the National Natural Science Foundation of China (Grant No. 51888103) and the Fundamental Research Funds for the Central Universities (No. NE2019103).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wang Tao or Kun Chang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interest or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 571 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Ding, L., Zhang, Y. et al. Insight of water oxidation kinetics of BiVO4 photoanode by vapor phase cation exchange method. Catal Lett (2024). https://doi.org/10.1007/s10562-024-04673-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10562-024-04673-3

Keywords

Navigation