Skip to main content
Log in

Mesoporous K-doped MoVTeNbOx Catalyze the Direct Oxidation of Propane to Acrylic Acid

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

K-doped MoVTeNbOx were prepared rapidly and simply by spray drying method and applied to catalyze the selective oxidation of propane to acrylic acid. Results show that doping of K could affect the relative content of M1 and M2 phases in MoVTeNbOx. The as-prepared K-doped MoVTeNbOx exhibited a unique spherical structure agglomerated by needle particles. These needles shaped particles interlaced and stacked with each other to form a mesoporous structure with an average pore size range of 27.26 to 50.78 nm. Moreover, compared with undoped catalysts, doping of K increased the surface V5+ active sites content of the MoVTeNbOx from 60 to 75%. For the conversion of propane to acrylic acid, an appropriate amount of M2 increased the conversion of propane. The selectivity of K-doped MoVTeNbOx catalyst for acrylic acid was significantly improved, possibly due to the distinct reduction in the number of medium acid sites caused by the introduction of K. Furthermore, the special mesoporous structure formed boosted the adsorption and activation of the catalyst for propane and the diffusion of product, which is important to improve the catalytic performance of MoVTeNbOx. Under the optimal reaction condition, the maximum selectivity and yield of K-doped catalyst (K/Mo = 0.005) for acrylic acid reached 72.06% and 49.57%, respectively.

Graphical Abstract

Mesoporous K-doped MoVTeNbOx catalyze the direct oxidation of propane to acrylic acid

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Kostić M, Igić M (2022) The use of acrylate polymers in dentistry. Polymers 14:4511. https://doi.org/10.3390/polym14214511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Roy S, Freiberg S (2017) Surface structure of acrylate polymer adhesives. Langmuir 33:1763–1768. https://doi.org/10.1021/acs.langmuir.6b03875

    Article  CAS  PubMed  Google Scholar 

  3. Seo H, Lee I (2021) Metal-organic framework reinforced acrylic polymer marine coatings. Materials 15:27. https://doi.org/10.3390/ma15010027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ivars-Barceló F, Solsona B (2023) Enhancement of ethylene production by alkali metal doping of MoVSb mixed oxide catalyst for ethane oxidative dehydrogenation. Appl Catal A: Gen 660:119200. https://doi.org/10.1016/j.apcata.2023.119200

    Article  CAS  Google Scholar 

  5. Lintz H-G, Müller SP (2009) The partial oxidation of propane on mixed metal oxides—a short overview. Appl Catal A: Gen 357:178–183. https://doi.org/10.1016/j.apcata.2009.01.018

    Article  CAS  Google Scholar 

  6. Tu X, Furuta N (2006) A new approach to the preparation of MoVNbTe mixed oxide catalysts for the oxidation of propane to acrylic acid. Catal Today 117:259–264. https://doi.org/10.1016/j.cattod.2006.05.059

    Article  CAS  Google Scholar 

  7. Callahan JL, Grasselli RK (2010) A selectivity factor in vapor-phase hydrocarbon oxidation catalysis. AIChE J 9:755–760. https://doi.org/10.1002/aic.690090610

    Article  Google Scholar 

  8. Vitry D, Dubois J-L (2004) Strategy in achieving propane selective oxidation over multi-functional Mo-based oxide catalysts. J Mol Catal A: Chem 220:67–76. https://doi.org/10.1016/j.molcata.2004.01.026

    Article  CAS  Google Scholar 

  9. Valente JS, Armendáriz-Herrera H (2014) Chemical, structural, and morphological changes of a MoVTeNb catalyst during oxidative dehydrogenation of ethane. ACS Catal 4:1292–1301. https://doi.org/10.1021/cs500143j

    Article  CAS  Google Scholar 

  10. Bondareva VM, Ishchenko EV (2017) Oxidative dehydrogenation of ethane on VMoTeNbO/Al–Si–O catalysts: effect of the support on the physicochemical and catalytic properties. Russ J Appl Chem 90:1136–1142. https://doi.org/10.1134/S1070427217070175

    Article  CAS  Google Scholar 

  11. Ishchenko EV, Gulyaev RV (2017) Effect of Bi on catalytic performance and stability of MoVTeNbO catalysts in oxidative dehydrogenation of ethane. Appl Catal A: Gen 534:58–69. https://doi.org/10.1016/j.apcata.2017.01.023

    Article  CAS  Google Scholar 

  12. Biswas P, Woo J (2010) Ruthenium and gold-doped M1 phase MoVNbTeO catalysts for propane ammoxidation to acrylonitrile. Catal Commun 12:58–63. https://doi.org/10.1016/j.catcom.2010.08.009

    Article  CAS  Google Scholar 

  13. Deniau B, Millet JMM (2008) Effect of several cationic substitutions in the M1 active phase of the MoVTeNbO catalysts used for the oxidation of propane to acrylic acid. J Catal 260:30–36. https://doi.org/10.1016/j.jcat.2008.08.020

    Article  CAS  Google Scholar 

  14. Grasselli RK, Lugmair CG (2010) Enhancement of acrylic acid yields in propane and propylene oxidation by selective P Doping of MoV(Nb)TeO-based M1 and M2 catalysts. Catal Today 157:33–38. https://doi.org/10.1016/j.cattod.2010.01.044

    Article  CAS  Google Scholar 

  15. Lazareva EV, Bondareva VM (2021) Oxidative dehydrogenation of ethane over M1 MoVNbTeO catalysts modified by the addition of Nd, Mn, Ga or Ge. Catal Today 361:50–56. https://doi.org/10.1016/j.cattod.2019.12.029

    Article  CAS  Google Scholar 

  16. Pyrz WD, Blom DA (2009) The effect of Nb or Ta substitution into the M1 phase of the MoV(Nb, Ta)TeO selective oxidation catalyst. Catal Today 142:320–328. https://doi.org/10.1016/j.cattod.2008.10.051

    Article  CAS  Google Scholar 

  17. Yun YS, Lee M (2018) Promoting effect of cerium on MoVTeNb mixed oxide catalyst for oxidative dehydrogenation of ethane to ethylene. Appl Catal B-Environ 237:554–562. https://doi.org/10.1016/j.apcatb.2018.06.025

    Article  CAS  Google Scholar 

  18. Ishchenko EV, Ishchenko AV (2015) Structural features of promoted MoVTeNbO catalysts for the oxidative dehydrogenation of ethane. Kinet Catal 56:788–795. https://doi.org/10.1134/s0023158415050080

    Article  CAS  Google Scholar 

  19. Hibst H, Rosowski F (2006) New Cs-containing Mo-V4+ based oxides with the structure of the M1 phase—Base for new catalysts for the direct alkane activation. Catal Today 117:234–241. https://doi.org/10.1016/j.cattod.2006.05.045

    Article  CAS  Google Scholar 

  20. Ishchenko EV, Kardash TY (2016) Effect of K and Bi doping on the M1 phase in MoVTeNbO catalysts for ethane oxidative conversion to ethylene. Appl Catal A: Gen 514:1–13. https://doi.org/10.1016/j.apcata.2015.12.018

    Article  CAS  Google Scholar 

  21. Blasco T, Botella P (2004) Selective oxidation of propane to acrylic acid on K-doped MoVSbO catalysts: catalyst characterization and catalytic performance. J Catal 228:362–373. https://doi.org/10.1016/j.jcat.2004.08.036

    Article  CAS  Google Scholar 

  22. Ueda W, Endo Y (2006) K-doped Mo–V–Sb–O crystalline catalysts for propane selective oxidation to acrylic acid. Top Catal 38:261–268. https://doi.org/10.1007/s11244-006-0024-7

    Article  CAS  Google Scholar 

  23. Ivars-Barceló F, Millet JMM (2014) Understanding effects of activation-treatments in K-free and K-MoVSbO bronze catalysts for propane partial oxidation. Catal Today 238:41–48. https://doi.org/10.1016/j.cattod.2014.01.036

    Article  CAS  Google Scholar 

  24. Klisińska A, Haras A (2004) Effect of additives on properties of vanadia-based catalysts for oxidative dehydrogenation of propane. J Mol Catal A: Chem 210:87–92. https://doi.org/10.1016/j.molcata.2003.08.026

    Article  CAS  Google Scholar 

  25. Ramírez-Salgado J, Quintana-Solórzano R (2022) On the role of oxidation states in the electronic structure via the formation of oxygen vacancies of a doped MoVTeNbOx in propylene oxidation. Appl Surf Sci 573:151428. https://doi.org/10.1016/j.apsusc.2021.151428

    Article  CAS  Google Scholar 

  26. Chu B, An H (2015) A self-redox pure-phase M1 MoVNbTeO/CeO2 nanocomposite as a highly active catalyst for oxidative dehydrogenation of ethane. J Catal 329:471–478. https://doi.org/10.1016/j.jcat.2015.06.009

    Article  CAS  Google Scholar 

  27. Quintana-Solorzano R, Mejia-Centeno I (2021) Discerning the metal doping effect on surface redox and acidic properties in a MoVTeNbO(x) for Propa(e)ne oxidation. ACS Omega 6:15279–15291. https://doi.org/10.1021/acsomega.1c01591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ke Y, Lai S-Y (2014) Comparison of the catalytic benzene oxidation activity of mesoporous ceria prepared via hard-template and soft-template. Microporous Mesoporous Mater 198:256–262. https://doi.org/10.1016/j.micromeso.2014.07.054

    Article  CAS  Google Scholar 

  29. Rao Y, Kang J (2008) 1-Hexene isomerization over sulfated mesoporous Ta oxide: the effects of active site and confinement. J Am Chem Soc 130:394–395. https://doi.org/10.1021/ja076584n

    Article  CAS  PubMed  Google Scholar 

  30. Ren Y, Ma Z (2012) Ordered mesoporous metal oxides: synthesis and applications. Chem Soc Rev 41:4909. https://doi.org/10.1039/c2cs35086f

    Article  CAS  PubMed  Google Scholar 

  31. Nell A, Getsoian AB (2014) Preparation and characterization of high-surface-area Bi(1–x)/3V1–xMoxO4 catalysts. Langmuir 30:873–880. https://doi.org/10.1021/la403646g

    Article  CAS  PubMed  Google Scholar 

  32. Wei T-C, Mack A (2016) Synthesis, characterization, and evaluation of a superficially porous particle with unique, elongated pore channels normal to the surface. J Chromatogr A 1440:55–65. https://doi.org/10.1016/j.chroma.2016.02.018

    Article  CAS  PubMed  Google Scholar 

  33. Yano K, Fukushima Y (2004) Synthesis of mono-dispersed mesoporous silica spheres with highly ordered hexagonal regularity using conventional alkyltrimethylammonium halide as a surfactant. J Mater Chem 14:1579. https://doi.org/10.1039/b313712k

    Article  CAS  Google Scholar 

  34. Chen H, Zhan L (2021) Spray drying of desulfurization wastewater: drying characteristics, product analysis and potential risk assessment. Powder Technol 394:748–756. https://doi.org/10.1016/j.powtec.2021.08.091

    Article  CAS  Google Scholar 

  35. Sun Z, Yang L (2020) Promoting the removal of fine particles and zero discharge of desulfurization wastewater by spray-turbulent agglomeration. Fuel 270:117461. https://doi.org/10.1016/j.fuel.2020.117461

    Article  CAS  Google Scholar 

  36. Celaya Sanfiz A, Hansen TW (2008) Preparation of phase-pure M1 MoVTeNb oxide catalysts by hydrothermal synthesis—influence of reaction parameters on structure and morphology. Top Catal 50:19–32. https://doi.org/10.1007/s11244-008-9106-z

    Article  CAS  Google Scholar 

  37. Beato P, Blume A (2006) Analysis of structural transformations during the synthesis of a MoVTeNb mixed oxide catalyst. Appl Catal A: Gen 307:137–147. https://doi.org/10.1016/j.apcata.2006.03.014

    Article  CAS  Google Scholar 

  38. Epicier T, Aouine M (2017) Spatial distribution of the vanadium atomic species in MoVTeO and MoVTeNbO oxide catalysts as revealed by high-angle annular dark-field scanning transmission electron microscopy. ChemCatChem 9:3526–3533. https://doi.org/10.1002/cctc.201601542

    Article  CAS  Google Scholar 

  39. Aouine M, Epicier T (2016) In situ environmental STEM study of the MoVTe Oxide M1 phase catalysts for ethane oxidative dehydrogenation. ACS Catal 6:4775–4781. https://doi.org/10.1021/acscatal.6b01114

    Article  CAS  Google Scholar 

  40. Kolen’ko YV, Zhang W (2011) Synthesis of MoVTeNb oxide catalysts with tunable particle dimensions. ChemCatChem 3:1597–1606. https://doi.org/10.1002/cctc.201100089

    Article  CAS  Google Scholar 

  41. Celayasanfiz A, Hansen T (2008) How important is the (001) plane of M1 for selective oxidation of propane to acrylic acid? J Catal 258:35–43. https://doi.org/10.1016/j.jcat.2008.05.028

    Article  CAS  Google Scholar 

  42. Chu B, An H (2016) Phase-pure M1 MoVNbTeO x catalysts with tunable particle size for oxidative dehydrogenation of ethane. Appl Catal A: Gen 524:56–65. https://doi.org/10.1016/j.apcata.2016.05.026

    Article  CAS  Google Scholar 

  43. Fan Y, Li S (2022) High-pressure hydrothermal synthesis of MoVTeNbOx with high surface V5+ abundance for oxidative conversion of propane to acrylic acid. J Supercrit Fluids 181:105469. https://doi.org/10.1016/j.supflu.2021.105469

    Article  CAS  Google Scholar 

  44. Narayanan R, El-Sayed MA (2004) Changing catalytic activity during colloidal platinum nanocatalysis due to shape changes: electron-transfer reaction. J Phys Chem B 108:8572–8580. https://doi.org/10.1021/jp037169u

    Article  CAS  Google Scholar 

  45. Wen Y, Ren F (2018) Facile construction of trimetallic PtAuRu nanostructures with highly porous features and perpendicular pore channels as enhanced formic acid catalysts. Colloids Surf, A 537:418–424. https://doi.org/10.1016/j.colsurfa.2017.10.049

    Article  CAS  Google Scholar 

  46. Li S, Liu Y (2020) Facile sub-/supercritical water synthesis of nanoflake MoVTeNbOx-mixed metal oxides without post-heat treatment and their catalytic performance. RSC Adv 10:39922–39930. https://doi.org/10.1039/d0ra06877b

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ranaware V, Verma D (2019) Highly-efficient and magnetically-separable ZnO/Co@N-CNTs catalyst for hydrodeoxygenation of lignin and its derived species under mild conditions. Green Chem 21:1021–1042. https://doi.org/10.1039/c8gc03623c

    Article  CAS  Google Scholar 

  48. Verma D, Insyani R (2017) Direct conversion of cellulose to high-yield methyl lactate over Ga-doped Zn/H-nanozeolite Y catalysts in supercritical methanol. Green Chem 19:1969–1982. https://doi.org/10.1039/c7gc00432j

    Article  CAS  Google Scholar 

  49. Alreshaidan S B, Ibrahim A A (2022) Effect of modified alumina support on the performance of Ni-based catalysts for CO2 reforming of methane. Catalysts 12. https://doi.org/10.3390/catal12091066

  50. Sarkar B, Goyal R (2017) MoO3 nanoclusters decorated on TiO2 nanorods for oxidative dehydrogenation of ethane to ethylene. Appl Catal B-Environ 217:637–649. https://doi.org/10.1016/j.apcatb.2017.06.037

    Article  CAS  Google Scholar 

  51. Lazareva EV, Bondareva VM (2020) Preparing MoVTeNbBiO catalysts for the selective oxidative conversion of light alkanes. Catal Ind 12:39–46. https://doi.org/10.1134/s2070050420010092

    Article  Google Scholar 

  52. Popova GY, Andrushkevich TV (2009) Formation of active phases in MoVTeNb oxide catalysts for ammoxidation of propane. Catal Today 144:312–317. https://doi.org/10.1016/j.cattod.2009.01.049

    Article  CAS  Google Scholar 

  53. Botella P, López Nieto JM (2002) The preparation, characterization, and catalytic behavior of MoVTeNbO catalysts prepared by hydrothermal synthesis. J Catal 209:445–455. https://doi.org/10.1006/jcat.2002.3648

    Article  CAS  Google Scholar 

  54. Feng R-M, Yang X-J (2007) The study on the source of Te and the dispersion of TeO2 in fabricating Mo–V–Te and Mo–V–Te–Nb mixed metal oxide catalysts for propane partial oxidation. J Mol Catal A: Chem 267:245–254. https://doi.org/10.1016/j.molcata.2006.11.047

    Article  CAS  Google Scholar 

  55. Chu B, Truter L (2015) Performance of phase-pure M1 MoVNbTeO catalysts by hydrothermal synthesis with different post-treatments for the oxidative dehydrogenation of ethane. Appl Catal A: Gen 498:99–106. https://doi.org/10.1016/j.apcata.2015.03.039

    Article  CAS  Google Scholar 

  56. Sprung C, Yablonsky G (2018) Constructing a rational kinetic model of the selective propane oxidation over a mixed metal oxide catalyst. Catalysts 8:330. https://doi.org/10.3390/catal8080330

    Article  CAS  Google Scholar 

  57. Baca M, Pigamo A (2003) Propane oxidation on MoVTeNbO mixed oxide catalysts: study of the phase composition of active and selective catalysts. Top Catal 23:39–46. https://doi.org/10.1023/A:1024864118695

    Article  CAS  Google Scholar 

  58. Grasselli RK, Buttrey DJ (2004) Active centers in Mo–V–Nb–Te–O (amm)oxidation catalysts. Catal Today 91–92:251–258. https://doi.org/10.1016/j.cattod.2004.03.060

    Article  CAS  Google Scholar 

  59. Grasselli RK (2005) Selectivity issues in (amm)oxidation catalysis. Catal Today 99:23–31. https://doi.org/10.1016/j.cattod.2004.09.021

    Article  CAS  Google Scholar 

  60. Grasselli RK, Volpe AF (2014) Catalytic consequences of a revised distribution of key elements at the active centers of the M1 phase of the MoVNbTeOx system. Top Catal 57:1124–1137. https://doi.org/10.1007/s11244-014-0286-4

    Article  CAS  Google Scholar 

  61. Baca M, Aouine M (2005) Synergetic effect between phases in MoVTe(Sb)NbO catalysts used for the oxidation of propane into acrylic acid. J Catal 233:234–241. https://doi.org/10.1016/j.jcat.2004.12.002

    Article  CAS  Google Scholar 

  62. Botella P (2004) Selective oxidative dehydrogenation of ethane on MoVTeNbO mixed metal oxide catalysts. J Catal 225:428–438. https://doi.org/10.1016/j.jcat.2004.04.024

    Article  CAS  Google Scholar 

  63. Tsuji H, Koyasu Y (2002) Synthesis of MoVNbTe(Sb)Ox composite oxide catalysts via reduction of polyoxometalates in an aqueous medium. J Am Chem Soc 124:5608–5609. https://doi.org/10.1021/ja0122344

    Article  CAS  PubMed  Google Scholar 

  64. Grasselli RK, Burrington JD (2003) Multifunctionality of active centers in (Amm)oxidation catalysts: from Bi–Mo–Oxto Mo–V–Nb–(Te, Sb)-Ox. Top Catal 23:5–22. https://doi.org/10.1023/a:1024859917786

    Article  CAS  Google Scholar 

  65. Novakova EK, Védrine JC (2002) Propane oxidation on Mo–V–Sb–Nb mixed-oxide catalysts: 1. Kinetic and Mechanistic Studies 211:226–234. https://doi.org/10.1006/jcat.2002.3704

    Article  CAS  Google Scholar 

  66. Ueda W, Oshihara K (2000) Selective oxidation of light alkanes over hydrothermally synthesized Mo-V-M-O (M=Al, Ga, Bi, Sb, and Te) oxide catalysts. Appl Catal A: Gen 200:135–143. https://doi.org/10.1016/S0926-860X(00)00627-X

    Article  CAS  Google Scholar 

  67. Botella P (2002) The preparation, characterization, and catalytic behavior of MoVTeNbO catalysts prepared by hydrothermal synthesis. J Catal 209:445–455. https://doi.org/10.1006/jcat.2002.3648

    Article  CAS  Google Scholar 

  68. Shishido T, Konishi T (2001) Oxidation and ammoxidation of propane over Mo–V–Sb mixed oxide catalysts. Catal Today 71:77–82. https://doi.org/10.1016/S0920-5861(01)00438-2

    Article  CAS  Google Scholar 

  69. Solsona B, Dejoz A (2001) SiO2-supported vanadium magnesium mixed oxides as selective catalysts for the oxydehydrogenation of short chain alkanes. Appl Catal A: Gen 208:99–110. https://doi.org/10.1016/s0926-860x(00)00686-4

    Article  CAS  Google Scholar 

  70. Blasco T, Nieto JML (1997) Oxidative dehydrogenation of short chain alkanes on supported vanadium oxide catalysts. Appl Catal A: Gen 157:117–142. https://doi.org/10.1016/S0926-860X(97)00029-X

    Article  CAS  Google Scholar 

  71. Watson RB, Ozkan US (2000) K/Mo catalysts supported over sol-gel silica–titania mixed oxides in the oxidative dehydrogenation of propane. J Catal 191:12–29. https://doi.org/10.1006/jcat.1999.2781

    Article  CAS  Google Scholar 

  72. Chen K, Xie S (2001) Structure and properties of oxidative dehydrogenation catalysts based on MoO3/Al2O3. J Catal 198:232–242. https://doi.org/10.1006/jcat.2000.3125

    Article  CAS  Google Scholar 

  73. Quintana-Solórzano R, Mejía-Centeno I (2021) Discerning the metal doping effect on surface redox and acidic properties in a MoVTeNbOx for Propa(e)ne oxidation. ACS Omega 6:15279–15291. https://doi.org/10.1021/acsomega.1c01591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Ishchenko EV, Popova GY (2013) Role of MoVTeNb oxide catalyst constituent phases in propane oxidation to acrylic acid. Catal Sustainable Energy 1:75–81. https://doi.org/10.2478/cse-2013-0003

    Article  Google Scholar 

  75. López-Medina R, Fierro JLG (2011) Structural changes occurring at the surface of alumina-supported nanoscaled Mo–V–Nb–(Te)–O catalytic system during the selective oxidation of propane to acrylic acid. Appl Catal A: Gen 406:34–42. https://doi.org/10.1016/j.apcata.2011.08.002

    Article  CAS  Google Scholar 

  76. Hernández-Morejudo S, Massó A (2015) Preparation, characterization and catalytic behavior for propane partial oxidation of Ga-promoted MoVTeO catalysts. Appl Catal A: Gen 504:51–61. https://doi.org/10.1016/j.apcata.2014.12.039

    Article  CAS  Google Scholar 

  77. Concepción P, Hernández S (2011) On the nature of active sites in MoVTeO and MoVTeNbO catalysts: the influence of catalyst activation temperature. Appl Catal A: Gen 391:92–101. https://doi.org/10.1016/j.apcata.2010.05.011

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial supports by the National Natural Science Foundation of China (No. 21706165), LiaoNing Revitalization Talents Program (No. XLYC2002001), Shenyang Young and Middle-aged Science and Technology Innovation Talent Support Program, China (No. RC210184), Applied Basic Research Programs of Liaoning Province (No. 2023JH2/101300243) and Basic Research Projects of Liaoning Provincial Department of Education, China (No. JYTMS20231497).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shuangming Li or Sansan Yu.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1050 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, J., Li, S., Wang, Y. et al. Mesoporous K-doped MoVTeNbOx Catalyze the Direct Oxidation of Propane to Acrylic Acid. Catal Lett (2024). https://doi.org/10.1007/s10562-024-04646-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10562-024-04646-6

Keywords

Navigation