Skip to main content
Log in

One Dimensional MoS2/MoP Heterostructures for Efficient Electrocatalytic Hydrogen Evolution Reaction

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Transition metal chalcogenides and transition metal phosphides have shown great potential in electrocatalytic hydrogen evolution reaction (HER) applications. Forming heterostructure is an effective way to enhance the electrocatalytic performance. In this paper, we report the facile synthesis of one dimensional MoS2/MoP heterostructures by using the electrospinning, phosphating and subsequent hydrothermal process. The heterostructures were confirmed by the high resolution transmission electron microscope (HRTEM) characterization. The X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDS) and Brunauer–Emmett–Teller (BET) confirmed the composition and structure of the MoS2/MoP heterostructures. With larger specific surface area and heterointerface between MoS2 and MoP, more electrocatalytic active sites and favorable synergistic effect existed in the one dimensional MoS2/MoP heterostructures. The one dimensional MoS2/MoP heterostructures exhibit an enhanced HER performance with a low overpotential of 113 mV at 10 mA/cm2 and a small Tafel slope of 62 mV/dec in 0.5 M H2SO4. It is a potential alternative for expensive noble metals in the future.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Dresselhaus MS, Thomas IL (2001) Alternative energy technologies. Nature 414:332–337

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Faber MS, Jin S (2014) Earth-abundant inorganic electrocatalysts and their nanostructures for energy conversion applications. Energy Environ Sci 7:3519–3542

    Article  CAS  Google Scholar 

  3. Xiao W, Zhang L, Bukhvalov D, Chen Z, Zou Z, Shang L, Yang X, Yan D, Han F, Zhang T (2020) Hierarchical ultrathin carbon encapsulating transition metal doped MoP electrocatalysts for efficient and pH-universal hydrogen evolution reaction. Nano Energy 70:104445

    Article  CAS  Google Scholar 

  4. Staffell I, Scamman D, Velazquez Abad A, Balcombe P, Dodds PE, Ekins P, Shah N, Ward KR (2009) The role of hydrogen and fuel cells in the global energy system. Energy Environ Sci 12:463–491

    Article  Google Scholar 

  5. Cortright RD, Davda RR, Dumesic JA (2002) Hydrogen from catalytic reforming of biomass-derived hydrocarbons in liquid water. Nature 418:964–967

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Gewirth AA, Thorum MS (2010) Electroreduction of dioxygen for fuel-cell applications: materials and challenges. Inorg Chem 49:3557–3566

    Article  CAS  PubMed  Google Scholar 

  7. Jiao Y, Zheng Y, Jaroniec M, Qiao SZ (2015) Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions. Chem Soc Rev 44:2060–2086

    Article  CAS  PubMed  Google Scholar 

  8. Pan Y, Sun K, Liu S, Cao X, Wu K, Cheong W-C, Chen Z, Wang Y, Li Y, Liu Y, Wang D, Peng Q, Chen C, Li Y (2018) Core-shell ZIF-8@ZIF-67-derived CoP nanoparticle-embedded N-doped carbon nanotube hollow polyhedron for efficient overall water splitting. J Am Chem Soc 140:2610–2618

    Article  CAS  PubMed  Google Scholar 

  9. Majeed A, Li X, Hou P, Tabassum H, Zhang L, Liu C, Cheng H-M (2020) Monolayer carbon-encapsulated Mo-doped Ni nanoparticles anchored on single-wall carbon nanotube film for total water splitting. Appl Catal B Environ 269:118823

    Article  CAS  Google Scholar 

  10. Wu H, Wang J, Jin W, Wu Z (2020) Recent development of two-dimensional metalorganic frameworks derived electrocatalysts for hydrogen and oxygen electrocatalysis. Nanoscale 12:18497–18522

    Article  CAS  PubMed  Google Scholar 

  11. Hussain S, Hassan M, Javed MS, Shaheen A, Shah SSA, Nazir MT, Najam T, Khan AJ, Zhang X, Liu G (2020) Distinctive flower-like CoNi2S4 nanoneedle arrays (CNS-NAs) for superior supercapacitor electrode performances. Ceram Int 46:25942–25948

    Article  CAS  Google Scholar 

  12. Jin Z, Li H, Li J (2022) Efficient photocatalytic hydrogen evolution over graphdiyne boosted with a cobalt sulfide formed S-scheme heterojunction. Chinese J Catal 43:303–315

    Article  CAS  Google Scholar 

  13. Fan Z, Guo X, Yang M, Jin Z (2022) Mechanochemical preparation and application of graphdiyne coupled with CdSe nanoparticles for efficient photocatalytic hydrogen production. Chinese J Catal 43:2708–2719

    Article  CAS  Google Scholar 

  14. Yang L, Xu P, Zhang W, Chen M, Feng C, Yuan X (2020) Facile synthesis of one-dimensional MoWP hybrid nanowires and their enhanced electrochemical catalytic activities. Chem Phys Lett 741:137107

    Article  CAS  Google Scholar 

  15. Yang L, Li R, Wang Q, Chen M, Yuan X (2020) One-dimensional MNiP (M = Mo, Cu) hybrid nanowires and their enhanced electrochemical catalytic activities. Chem Phys Lett 749:137438

    Article  CAS  Google Scholar 

  16. Lewis NS (2007) Toward cost-effective solar energy use. Science 315:798–801

    Article  ADS  CAS  PubMed  Google Scholar 

  17. Xiao P, Sk MA, Thia L, Ge X, Lim RJ, Wang J-Y, Lim KH, Wang X (2014) Molybdenum phosphide as an efficient electrocatalyst for the hydrogen evolution reaction. Energy Environ Sci 7:2624–2629

    Article  CAS  Google Scholar 

  18. Chi J-Q, Chai Y-M, Shang X, Dong B, Liu C-G, Zhang W, Jin Z (2018) Heterointerface engineering of trilayer-shelled ultrathin MoS2/MoP/N-doped carbon hollow nanobubbles for efficient hydrogen evolution. J Mater Chem A 6:24783–24792

    Article  CAS  Google Scholar 

  19. Liu Z-Z, Shang X, Dong B, Chai Y-M (2018) Triple Ni-Co-Mo metal sulfides with one-dimensional and hierarchical nanostructures towards highly efficient hydrogen evolution reaction. J Catal 361:204–213

    Article  CAS  Google Scholar 

  20. Yan K-L, Qin J-F, Liu Z-Z, Dong B, Chi J-Q, Gao W-K, Lin J-H, Chai Y-M, Liu C-G (2018) Organic-inorganic hybrids-directed ternary NiFeMoS anemone-like nanorods with scaly surface supported on nickel foam for efficient overall water splitting. Chem Eng J 334:922–931

    Article  CAS  Google Scholar 

  21. Chi J-Q, Xie J-Y, Zhang W-W, Dong B, Qin J-F, Zhang X-Y, Lin J-H, Chai Y-M, Liu C-G (2019) N-Doped sandwich-structured Mo2C@C@Pt interface with ultralow Pt loading for pH-universal hydrogen evolution reaction. ACS Appl Mater Interfaces 11:4047–4056

    Article  CAS  PubMed  Google Scholar 

  22. Zheng L, Liu C, Zhang W, Gao B, Yan T, Zhang Y, Cao X, Gao Q, Tang Y (2024) Heterostructured MoP/CoMoP2 embedded in an N, P-doped carbon matrix as a highly efficient cooperative catalyst for pH-universal overall water splitting. J Mater Chem A 12:1243–1252

    Article  CAS  Google Scholar 

  23. Ding S, He P, Feng W, Li L, Zhang G, Chen J, Dong F, He H (2016) Novel molybdenum disulfide nanosheets-decorated polyaniline: preparation, characterization and enhanced electrocatalytic activity for hydrogen evolution reaction. J Phys Chem Solids 91:41–47

    Article  ADS  CAS  Google Scholar 

  24. Staszak-Jirkovský J, Malliakas CD, Lopes PP, Danilovic N, Kota SS, Chang K, Genorio B, Strmcnik D, Stamenkovic VR, Kanatzidis MG, Markovic NM (2016) Design of active and stable Co-Mo-Sx chalcogels as pH-universal catalysts for the hydrogen evolution reaction. Nat Mater 15:197–203

    Article  ADS  PubMed  Google Scholar 

  25. Hinnemann B, Moses PG, Bonde J, Jørgensen KP, Nielsen JH, Horch S, Chorkendorff I, Nørskov JK (2005) Biomimetic hydrogen evolution: MoS2 nanoparticles as catalyst for hydrogen evolution. J Am Chem Soc 127:5308–5309

    Article  CAS  PubMed  Google Scholar 

  26. Jaramillo TF, Jørgensen KP, Bonde J, Nielsen JH, Horch S, Chorkendorff I (2007) Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts. Science 317:100–102

    Article  ADS  CAS  PubMed  Google Scholar 

  27. Appel AM, DuBois DL, DuBois MR (2005) Molybdenum-sulfur dimers as electrocatalysts for the production of hydrogen at low overpotentials. J Am Chem Soc 127:12717–12726

    Article  CAS  PubMed  Google Scholar 

  28. Lukowski MA, Daniel AS, Meng F, Forticaux A, Li L, Jin S (2013) Enhanced hydrogen evolution catalysis from chemically exfoliated metallic MoS2 nanosheets. J Am Chem Soc 135:10274–10277

    Article  CAS  PubMed  Google Scholar 

  29. Yang L, Liu P, Li J, Xiang B (2017) Two-dimensional material molybdenum disulfides as electrocatalysts for hydrogen evolution. Catalysts 7:285

    Article  Google Scholar 

  30. Merki D, Fierro S, Vrubel H, Hu X (2011) Amorphous molybdenum sulfide films as catalysts for electrochemical hydrogen production in water. Chem Sci 2:1262–1267

    Article  CAS  Google Scholar 

  31. Xie J, Zhang H, Li S, Wang R, Sun X, Zhou M, Zhou J, Lou (David) XW, Xie Y (2013) Defect-rich MoS2 ultrathin nanosheets with additional active edge sites for enhanced electrocatalytic hydrogen evolution. Adv Mater 25:5807–5813

    Article  CAS  PubMed  Google Scholar 

  32. Kong D, Wang H, Cha JJ, Pasta M, Koski KJ, Yao J, Cui Y (2013) Synthesis of MoS2 and MoSe2 films with vertically aligned layers. Nano Lett 13:1341–1347

    Article  ADS  CAS  PubMed  Google Scholar 

  33. Shi J, Ma D, Han G-F, Zhang Y, Ji Q, Gao T, Sun J, Song X, Li C, Zhang Y, Lang X-Y, Zhang Y, Liu Z (2014) Controllable growth and transfer of monolayer MoS2 on Au foils and its potential application in hydrogen evolution reaction. ACS Nano 8:10196–10204

    Article  CAS  PubMed  Google Scholar 

  34. Yang L, Hao H, Fu Q, Huang Y, Zhang J, Cui X, Fan Z, Liu K, Xiang B (2015) Single-crystal atomic-layered molybdenum disulfide nanobelts with high surface activity. ACS Nano 9:6478–6483

    Article  CAS  PubMed  Google Scholar 

  35. Li Y, Wang H, Xie L, Liang Y, Hong G, Dai H (2011) MoS2 nanoparticles grown on graphene: an advanced catalyst for the hydrogen evolution reaction. J Am Chem Soc 133:7296–7299

    Article  CAS  PubMed  Google Scholar 

  36. Li H, Tsai C, Koh AL, Cai L, Contryman AW, Fragapane AH, Zhao J, Han HS, Manoharan HC, Abild-Pedersen F, Nørskov JK, Zheng X (2016) Activating and optimizing MoS2 basal planes for hydrogen evolution through the formation of strained sulphur vacancies. Nat Mater 15:48–50

    Article  ADS  CAS  PubMed  Google Scholar 

  37. Shi Y, Zhang B (2016) Recent advances in transition metal phosphide nanomaterials: synthesis and applications in hydrogen evolution reaction. Chem Soc Rev 45:1529–1541

    Article  CAS  PubMed  Google Scholar 

  38. Du H, Kong R-M, Guo X, Qu F, Li J (2018) Recent progress in transition metal phosphides with enhanced electrocatalysis for hydrogen evolution. Nanoscale 10:21617–21624

    Article  CAS  PubMed  Google Scholar 

  39. Jin Z, Li P, Huang X, Zeng G, Jin Y, Zheng B, Xiao D (2014) Three-dimensional amorphous tungsten-doped nickel phosphide microsphere as an efficient electrocatalyst for hydrogen evolution. J Mater Chem A 2:18593–18599

    Article  CAS  Google Scholar 

  40. Liu P, Rodriguez JA (2005) Catalysts for hydrogen evolution from the [NiFe] hydrogenase to the Ni2P (001) surface: the importance of ensemble effect. J Am Chem Soc 127:14871–14878

    Article  CAS  PubMed  Google Scholar 

  41. Yang L, Zhang J, Feng C, Xu G, Xie C, Yuan X, Xiang B (2019) MoS2 nanosheet/MoS2 flake homostructures for efficient electrocatalytic hydrogen evolution. Mater Res Express 6:085005

    Article  ADS  CAS  Google Scholar 

  42. Tang Q, Jiang D (2015) Stabilization and band-gap tuning of the 1T-MoS2 monolayer by covalent functionalization. Chem Mater 27:3743–3748

    Article  CAS  Google Scholar 

  43. Chen G, Dong WF, Li BL, Deng YH, Wang XH, Zhang XF, Luo HQ, Li NB (2018) Cobalt incorporated MoS2 hollow structure with rich out-of-plane edges for efficient hydrogen production. Electrochim Acta 276:81–91

    Article  CAS  Google Scholar 

  44. Kim D, Sun D, Lu W, Cheng Z, Zhu Y, Le D, Rahman TS, Bartels L (2011) Toward the growth of an aligned single-layer MoS2 film. Langmuir 27:11650–11653

    Article  CAS  PubMed  Google Scholar 

  45. Li J, Zheng G (2017) One-dimensional earth-abundant nanomaterials for water-splitting electrocatalysts. Adv Sci 4:1600380

    Article  Google Scholar 

  46. Peng Z, Jia D, Al-Enizi AM, Elzatahry AA, Zheng G (2015) From water oxidation to reduction: homologous NieCo based nanowires as complementary water splitting electrocatalysts. Adv Energy Mater 5:1402031

    Article  Google Scholar 

  47. Jiang H, Zhang K, Li W, Cui Z, He S-A, Zhao S, Li J, He G, Shearing PR, Brett DJL (2020) MoS2/NiS core-shell structures for improved electrocatalytic process of hydrogen evolution. J Power Sources 472:228497

    Article  CAS  Google Scholar 

  48. Lin J, Wang P, Wang H, Li C, Si X, Qi J, Cao J, Zhong Z, Fei W, Feng J (2019) Defect-rich heterogeneous MoS2/NiS2 nanosheets electrocatalysts for efficient overall water splitting. Adv Sci 6:1900246

    Article  Google Scholar 

  49. He S, Du H, Wang K, Liu Q, Sun J, Liu Y, Du Z, Xie L, Ai W, Huang W (2020) Low-temperature molten salt synthesis of MoS2@CoS2 heterostructures for efficient hydrogen evolution reaction. Chem Commun 56:5548–5551

    Article  CAS  Google Scholar 

  50. Hu J, Zhang C, Zhang Y, Yang B, Qi Q, Sun M, Zi F, Leung MKH, Huang B (2020) Interface modulation of MoS2/metal oxide heterostructures for efficient hydrogen evolution electrocatalysis. Small 16:2002212

    Article  CAS  Google Scholar 

  51. Wang P, Wang X, Diao R, Guo Y, Wang Y, Zhou C, Xie K-F, Sun S, Zhang Y-H (2021) Hierarchical tubular MoP/MoS2 composite with enhanced electrochemical hydrogen evolution activity. J Mater Sci Mater Electron 32:14047–14056

    Article  CAS  Google Scholar 

  52. Wang X, Dai J, Xie H, Yang C, He L, Wu T, Liu X, Xu Y, Yuan C, Dai L (2022) In-situ construction of ultrathin MoP-MoS2 heterostructure on N, P and S co-doped hollow carbon spheres as nanoreactor for efficient hydrogen evolution. Chem Eng J 438:135544

    Article  CAS  Google Scholar 

  53. Wu A, Gu Y, Xie Y, Tian C, Yan H, Wang D, Zhang X, Cai Z, Fu H (2019) Effective electrocatalytic hydrogen evolution in neutral medium based on 2D MoP/MoS2 heterostructure nanosheets. ACS Appl Mater Interfaces 11:25986–25995

    Article  CAS  PubMed  Google Scholar 

  54. Yang L, Cui X, Zhang J, Wang K, Shen M, Zeng S, Dayeh SA, Feng L, Xiang B (2014) Lattice strain effects on the optical properties of MoS2 nanosheets. Sci Rep 4:5649

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  55. Yao Z, Su Y, Lu C, Yang C, Xu Z, Zhu J, Zhuang X, Zhang F (2016) Template-directed approach to two-dimensional molybdenum phosphide-carbon nanocomposites with high catalytic activities in the hydrogen evolution reaction. New J Chem 40:6015–6021

    Article  CAS  Google Scholar 

  56. Liu Q, Xue Z, Jia B, Liu Q, Liu K, Lin Y, Liu M, Li Y, Li G (2020) Hierarchical nanorods of MoS2/MoP heterojunction for efficient electrocatalytic hydrogen evolution reaction. Small 16:2002482

    Article  CAS  Google Scholar 

  57. Xue Y, Ba X, Xu Y, Yan Q, Zhu M, Zhu K, Ye K, Yan J, Cao D, Wang G (2021) Vertically oriented Ni-doped MoS2 nanosheets supported on hollow carbon microtubes for enhanced hydrogen evolution reaction and water splitting. Compos Part B-Eng 224:109229

    Article  CAS  Google Scholar 

  58. Wang XD, Xu YF, Rao HS, Chen WY, Zhang WX, Kuang DB, Su CY (2016) Novel porous molybdenum tungsten phosphide hybrid nanosheets on carbon cloth for efficient hydrogen evolution. Energy Environ Sci 9:1468–1475

    Article  CAS  Google Scholar 

  59. Merki D, Vrubel H, Rovelli L, Fierro S, Hu X (2012) Fe Co, and Ni ions promote the catalytic activity of amorphous molybdenum sulfide films for hydrogen evolution. Chem Sci 3:2515–2525

    Article  CAS  Google Scholar 

  60. Li Y, Nidamanuri NP, Jiang A, Wang Z, Li Q, Dong M (2020) In situ construction of tandem nitrogen-doped MoP nanocrystals for high-efficient electrocatalytic hydrogen evolution. Electrochim Acta 342:136059

    Article  CAS  Google Scholar 

  61. Sun A, Shen Y, Wu Z, Wang D (2017) N-doped MoP nanoparticles for improved hydrogen evolution. Int J Hydrogen Energ 42:14566–14571

    Article  CAS  Google Scholar 

  62. Conway BE, Tilak BV (2002) Interfacial processes involving electrocatalytic evolution and oxidation of H2, and the role of chemisorbed H. Electrochim Acta 47:3571–3594

    Article  CAS  Google Scholar 

  63. Laursen AB, Kegnæs S, Dahl S, Chorkendorff I (2012) Molybdenum sulfides-efficient and viable materials for electro- and photoelectrocatalytic hydrogen evolution. Energy Environ Sci 5:5577–5591

    Article  CAS  Google Scholar 

  64. Askari MB, Beheshti-Marnani A, Seifi M, Rozati SM, Salarizadeh P (2019) Fe3O4@MoS2/RGO as an effective nano-electrocatalyst toward electrochemical hydrogen evolution reaction and methanol oxidation in two settings for fuel cell application. J Colloid Interface Sci 537:186–196

    Article  ADS  CAS  PubMed  Google Scholar 

  65. Askari MB, Salarizadeh P (2019) Ultra-small ReS2 nanoparticles hybridized with rGO as cathode and anode catalysts towards hydrogen evolution reaction and methanol electrooxidation for DMFC in acidic and alkaline media. Synth Met 256:116131

    Article  CAS  Google Scholar 

  66. Salarizadeh P, Rastgoo-Deylami M, Askari MB (2022) Electrochemical properties of Ni3S2@MoS2-rGO ternary nanocomposite as a promising cathode for NieZn batteries and catalyst towards hydrogen evolution reaction. Renewable Energy 194:152–162

    Article  CAS  Google Scholar 

  67. Salarizadeh P, Askari MB, Seifi M, Rozati S (2019) MoS2 coating on different carbonaceous materials: comparison of electrochemical properties and hydrogen evolution reaction performance. J Electroanal Chem 847:113198

    Article  CAS  Google Scholar 

  68. Caban-Acevedo M, Stone ML, Schmidt JR, Thomas JG, Ding Q, Chang HC, Tsai ML, He JH, Jin S (2015) Efficient hydrogen evolution catalysis using ternary pyrite-type cobalt phosphosulphide. Nat Mater 14:1245–1251

    Article  ADS  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (NSFC) (12104343), Excellent Youth Research Project of Education Department of Anhui Province (2022AH030148, YQYB2023028) and National college student innovation and entrepreneurship training program (202310376074, 202210376075).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Yang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 978 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, L., Yuan, X., Liang, W. et al. One Dimensional MoS2/MoP Heterostructures for Efficient Electrocatalytic Hydrogen Evolution Reaction. Catal Lett (2024). https://doi.org/10.1007/s10562-024-04634-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10562-024-04634-w

Keywords

Navigation