Skip to main content
Log in

Polymer Supported Ferric Chloride as Heterogeneous Catalyst for Three Component Biginelli Reaction

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Polymer supported ferric chloride catalyst is prepared and characterized by IR, SEM, TEM, EDS, TGA, ICP-MS and XRD. The heterogenized Lewis acid catalyst was found to efficiently promote three component Biginelli reaction, where the 3,4-dihydropyrimidine-2(1H)-ones/thiones were efficiently synthesized from urea/thiourea. The catalyst was found to be quite robust for this reaction with very less leaching of metal was observed, and hence can be efficiently recycled. The catalyst was found to be effective for multiple uses, establishing its reusability in this important reaction.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Chart 1
Fig. 8

Similar content being viewed by others

References

  1. Nagarajaiah H, Mukhopadhyay A, Moorthy JN (2016) Biginelli reaction: an overview. Tetrahedron Lett. https://doi.org/10.1016/j.tetlet.2016.09.047

    Article  Google Scholar 

  2. Suresh A, Sandhu JS (2012) Past, present and future of the Biginelli reaction: a critical perspective. Arkivoc. https://doi.org/10.3998/ark.5550190.0013.103

    Article  Google Scholar 

  3. Bosica G, Cachia F, De Nittis R, Mariotti N (2021) Efficient one-pot synthesis of 3,4-dihydropyrimidin-2(1h)-ones via a three-component biginelli reaction. Molecules. https://doi.org/10.3390/molecules26123753

    Article  PubMed  PubMed Central  Google Scholar 

  4. Narayanan DP, Gopalakrishnan A, Yaakob Z et al (2020) A facile synthesis of clay – graphene oxide nanocomposite catalysts for solvent free multicomponent Biginelli reaction. Arab J Chem. https://doi.org/10.1016/j.arabjc.2017.04.011

    Article  Google Scholar 

  5. Esen E, Meier MAR (2020) Modification of starch via the biginelli multicomponent reaction. Macromol Rapid Commun. https://doi.org/10.1002/marc.201900375

    Article  PubMed  Google Scholar 

  6. Heravi MM, Moradi R, Mohammadkhani L, Moradi B (2018) Current progress in asymmetric Biginelli reaction: an update. Mol Divers. https://doi.org/10.1007/s11030-018-9841-4

    Article  PubMed  Google Scholar 

  7. Kheffache O, Lopez-Olmos C, Rodriguez-Ramos I, Cherifi O (2020) Clean 3,4-dihydropyrimidones synthesis via biginelli reaction over supported molybdenum: structural and textural characteristic of αMoO3. Bull Chem React Engineer Catal. https://doi.org/10.9767/BCREC.15.3.8264.698-713

    Article  Google Scholar 

  8. Chopda LV, Dave PN (2020) Recent advances in homogeneous and heterogeneous catalyst in Biginelli reaction from 2015–19: a concise review. ChemistrySelect. https://doi.org/10.1002/slct.202000742

    Article  Google Scholar 

  9. Do Nascimento LG, Dias IM, Meireles De Souza GB et al (2020) Niobium Oxides as heterogeneous catalysts for Biginelli multicomponent reaction. J Organ Chem. https://doi.org/10.1021/acs.joc.0c01167

    Article  Google Scholar 

  10. Belferdi F, Bouremmad F, Shawuti S, Gulgun MA (2021) Effect of the exchanged cation in an algerian montmorillonite used as a heterogeneous catalyst for biginelli reaction. Acta Chim Slov. https://doi.org/10.17344/acsi.2020.6300

    Article  PubMed  Google Scholar 

  11. Chaudhary GR, Bansal P, Mehta SK (2014) Recyclable CuS quantum dots as heterogeneous catalyst for Biginelli reaction under solvent free conditions. Chem Eng J. https://doi.org/10.1016/j.cej.2014.01.012

    Article  Google Scholar 

  12. Patel U, Parmar B, Patel P et al (2021) The synthesis and characterization of Zn(ii)/Cd(ii) based MOFs by a mixed ligand strategy: A Zn(ii) MOF as a dual functional material for reversible dye adsorption and as a heterogeneous catalyst for the Biginelli reaction. Mater Chem Front. https://doi.org/10.1039/d0qm00611d

    Article  Google Scholar 

  13. Tejero TN, Kümmerle AE, Bauerfeldt GF (2019) Theory behind biginelli reaction revisited. Revista Virtual de Quimica. https://doi.org/10.21577/1984-6835.20190083

    Article  Google Scholar 

  14. Sharma M, Sharma G, Kaushal S, Badru R (2023) Eu-Gd@BiPO4 nano-composite: a potential heterogeneous catalyst in Biginelli reaction. J Mol Liq. https://doi.org/10.1016/j.molliq.2023.122218

    Article  Google Scholar 

  15. Mahdavinia GH, Sepehrian H (2008) MCM-41 anchored sulfonic acid (MCM-41-R-SO3H): a mild, reusable and highly efficient heterogeneous catalyst for the Biginelli reaction. Chinese Chem Lett. https://doi.org/10.1016/j.cclet.2008.09.028

    Article  Google Scholar 

  16. Li P, Regati S, Butcher RJ et al (2011) Hydrogen-bonding 2D metal-organic solids as highly robust and efficient heterogeneous green catalysts for Biginelli reaction. Tetrahedron Lett. https://doi.org/10.1016/j.tetlet.2011.09.099

    Article  PubMed  PubMed Central  Google Scholar 

  17. Waghchaure RH, Jagdale BS, Koli PB, Adole VA (2022) Nano 5% Fe–ZnO: a highly efficient and recyclable heterogeneous solid nano catalyst for the Biginelli reaction. J Indian Chem Soc. https://doi.org/10.1016/j.jics.2022.100468

    Article  Google Scholar 

  18. Douzandegi Fard MA, Ghafuri H, Rashidizadeh A (2019) Sulfonated highly ordered mesoporous graphitic carbon nitride as a super active heterogeneous solid acid catalyst for Biginelli reaction. Micropor Mesopor Mater. https://doi.org/10.1016/j.micromeso.2018.07.030

    Article  Google Scholar 

  19. Bendi A, Dharma Rao GB, Sharma N, Singh MP (2021) CoFe2O4/Cu(OH)2 Nanocomposite: expeditious and magnetically recoverable heterogeneous catalyst for the four component Biginelli/transesterification reaction and their DFT studies. Results Chem. https://doi.org/10.1016/j.rechem.2021.100202

    Article  Google Scholar 

  20. Zanin LL, Porto ALM (2020) HClO4-Al2O3 as a prominent catalyst in the synthesis of 3,4-dihydropyrimidin-2(1h)-ones/thiones under environmentally friendly solvent conditions. ChemistrySelect. https://doi.org/10.1002/slct.202001830

    Article  Google Scholar 

  21. Oboudatian HS, Naeimi H, Moradian M (2021) A Brønsted acidic ionic liquid anchored to magnetite nanoparticles as a novel recoverable heterogeneous catalyst for the Biginelli reaction. RSC Adv. https://doi.org/10.1039/d0ra09929e

    Article  PubMed  PubMed Central  Google Scholar 

  22. Zhang H, Hu Q, Liu J et al (2022) Iron-organic framework nanoparticle-supported tungstosilicic acid as a catalyst for the Biginelli reaction. ACS Appl Nano Mater. https://doi.org/10.1021/acsanm.2c03906

    Article  PubMed  PubMed Central  Google Scholar 

  23. Krishna B, Payra S, Roy S (2022) Synthesis of dihydropyrimidinones via multicomponent reaction route over acid functionalized Metal-Organic framework catalysts. J Colloid Interface Sci. https://doi.org/10.1016/j.jcis.2021.09.031

    Article  PubMed  Google Scholar 

  24. Stadler A, Yousefi BH, Dallinger D et al (2003) Scalability of microwave-assisted organic synthesis. From single-mode to multimode parallel batch reactors. Org Process Res Dev. https://doi.org/10.1021/op034075+

    Article  Google Scholar 

  25. Paul S, Gogoi HP, Singh A, Barman P (2023) Nanostructured metal oxides by facile thermal decomposition of Zinc(II) and Copper(II) Schiff base complexes: microwave synthesis of complexes, characterization, DFT study, optical properties and application of its oxides in multicomponent Biginelli reaction. Inorg Chem Commun. https://doi.org/10.1016/j.inoche.2023.110760

    Article  Google Scholar 

  26. Verma A, De D, Tomar K, Bharadwaj PK (2017) An amine functionalized metal-organic framework as an effective catalyst for conversion of CO2 and biginelli reactions. Inorg Chem. https://doi.org/10.1021/acs.inorgchem.7b01286

    Article  PubMed  Google Scholar 

  27. Gogia A, Mandal SK (2022) Topologically driven pore/surface engineering in a recyclable microporous metal-organic vessel decorated with hydrogen-bond acceptors for solvent-free heterogeneous catalysis. ACS Appl Mater Interfaces. https://doi.org/10.1021/acsami.2c06141

    Article  PubMed  Google Scholar 

  28. Mohammadian R, Amini MM, Shaabani A (2020) Thiourea-functionalized MIL-101(Cr) metal-organic framework as a hydrogen-bond-donating heterogeneous organocatalyst for the Friedel-Crafts alkylation and Biginelli reactions. Catal Commun. https://doi.org/10.1016/j.catcom.2019.105905

    Article  Google Scholar 

  29. Zhao SY, Chen ZY, Wei N et al (2019) Highly efficient cooperative catalysis of single-site lewis acid and brønsted acid in a metal-organic framework for the Biginelli reaction. Inorg Chem. https://doi.org/10.1021/acs.inorgchem.9b00816

    Article  PubMed  PubMed Central  Google Scholar 

  30. Karimi F (2020) Nafion-H®: Its catalytic applications. Iran J Catal 10:253–257

    Google Scholar 

  31. Mansano Willig JC, Granetto G, Reginato D et al (2020) A comparative study between Cu(INA)2-MOF and [Cu(INA)2(H2O)4] complex for a click reaction and the Biginelli reaction under solvent-free conditions. RSC Adv. https://doi.org/10.1039/c9ra10171c

    Article  PubMed  PubMed Central  Google Scholar 

  32. Online VA, Willig JCM, Granetto G et al (2020) A comparative study between Cu ( INA ) 2 -MOF and conditions †. RSC Adv. https://doi.org/10.1039/C9RA10171C

    Article  Google Scholar 

  33. Mangala K, Sreekumar K (2020) Study of polycarbosilane-supported copper(II) as a heterogeneous catalyst. Polymer Bulletin. https://doi.org/10.1007/s00289-019-02741-y

    Article  Google Scholar 

  34. Gupta AK, De D, Tomar K, Bharadwaj PK (2018) A Cu(II) metal-organic framework with significant H2 and CO2 storage capacity and heterogeneous catalysis for the aerobic oxidative amination of C(sp3)-H bonds and Biginelli reactions. Dalton Trans. https://doi.org/10.1039/c7dt04006g

    Article  PubMed  Google Scholar 

  35. Moradi L, Tadayon M (2018) Green synthesis of 3,4-dihydropyrimidinones using nano Fe3O4@meglumine sulfonic acid as a new efficient solid acid catalyst under microwave irradiation. J Saudi Chem Soc. https://doi.org/10.1016/j.jscs.2017.07.004

    Article  Google Scholar 

  36. Maurya MR, Chauhan A, Arora S, Gupta P (2022) Triazole based oxidovanadium(V) complex supported on chloromethylated polymer and its catalytic activity for the synthesis of dihydropyrimidinones (DHPMs). Catal Today. https://doi.org/10.1016/j.cattod.2022.03.006

    Article  PubMed Central  Google Scholar 

  37. Alvim HGO, De Lima TB, De Oliveira HCB et al (2013) Ionic liquid effect over the biginelli reaction under homogeneous and heterogeneous catalysis. ACS Catal. https://doi.org/10.1021/cs400291t

    Article  Google Scholar 

  38. Zolfagharinia S, Kolvari E, Koukabi N (2017) A new type of magnetically-recoverable heteropolyacid nanocatalyst supported on zirconia-encapsulated Fe3O4 nanoparticles as a stable and strong solid acid for multicomponent reactions. Catal Letters. https://doi.org/10.1007/s10562-017-2015-7

    Article  Google Scholar 

  39. Muškinja J, Janković N, Ratković Z et al (2016) Vanillic aldehydes for the one-pot synthesis of novel 2-oxo-1,2,3,4-tetrahydropyrimidines. Mol Divers. https://doi.org/10.1007/s11030-016-9658-y

    Article  PubMed  Google Scholar 

  40. Fazaeli R, Tangestaninejad S, Aliyan H, Moghadam M (2006) One-pot synthesis of dihydropyrimidinones using facile and reusable polyoxometalate catalysts for the Biginelli reaction. Appl Catal A Gen. https://doi.org/10.1016/j.apcata.2006.04.043

    Article  Google Scholar 

  41. Sambasivudu K, Reddy YB, Yadav JS et al (2008) Ceria-supported vinylpyridine polymers: synthesis, characterization and application in catalysis. Int J Polym Mater Polym Biomater. https://doi.org/10.1080/00914030802153199

    Article  Google Scholar 

  42. Qureshi ZS, Deshmukh KM, Bhanage BM (2014) Applications of ionic liquids in organic synthesis and catalysis. Clean Technol Environ Policy 16:1487–1513. https://doi.org/10.1007/s10098-013-0660-0

    Article  Google Scholar 

  43. Hojati SF, Gholizadeh M, Haghdoust M, Shafiezadeh F (2010) 1,3-dichloro-5,5-dimethylhydantoin as a novel and efficient homogeneous catalyst in Biginelli reaction. Bull Korean Chem Soc. https://doi.org/10.5012/bkcs.2010.31.11.3238

    Article  Google Scholar 

  44. Bigdeli MA, Jafari S, Mahdavinia GH, Hazarkhani H (2007) Trichloroisocyanuric acid, a new and efficient catalyst for the synthesis of dihydropyrimidinones. Catal Commun. https://doi.org/10.1016/j.catcom.2007.01.022

    Article  Google Scholar 

  45. Avudaiappan G, Unnikrishnan V, Sreekumar K (2020) Convenient synthesis of dihydropyridine and dihydropyrimidinethione derivatives using a porphyrin cored G1 PAMAM dendrimer as a homogeneous catalyst. ChemistrySelect. https://doi.org/10.1002/slct.201903597

    Article  Google Scholar 

  46. Janković N, Bugarčić Z, Marković S (2015) Double catalytic effect of (PhNH3)2CuCl4in a novel, highly efficient synthesis of 2-oxo- and thioxo-1,2,3,4-tetrahydropyrimidines. J Serbian Chem Soc. https://doi.org/10.2298/JSC141028011J

    Article  Google Scholar 

  47. Naeimi H, Nazifi ZS (2018) Facile synthesis of dihydropyrimidinone derivatives via Biginelli reaction using Brønsted acidic ionic liquid [H-NMP]+[CH3SO3]- as an efficient homogeneous catalyst. Iranian Journal of Catalysis 8:249–255

    CAS  Google Scholar 

  48. Legeay JC, Vanden Eynde JJ, Toupet L, Bazureaua JP (2007) A three-component condensation protocol based on ionic liquid phase bound acetoacetate for the synthesis of Biginelli 3,4-dihydropyrimidine-2(1H)-ones. Arkivoc 3:13–28

    Google Scholar 

  49. Saikia S, Borah R (2019) One-pot sequential synthesis of 2-amino-4, 6-diaryl pyrimidines involving SO3H-functionalized piperazinium-based dicationic ionic liquids as homogeneous catalysts. ChemistrySelect. https://doi.org/10.1002/slct.201902060

    Article  Google Scholar 

  50. Hojati SF, Gholizadeh M, Haghdoust M, Shafiezadeh F (2011) ChemInform abstract: 1,3-dichloro-5,5-dimethylhydantoin as a novel and efficient homogeneous catalyst in Biginelli reaction. ChemInform. https://doi.org/10.1002/chin.201113156

    Article  Google Scholar 

  51. Girase PS, Khairnar BJ, Nagarale DV, Chaudhari BR (2015) Microwave-promoted aluminium sulphate in PEG as a green homogeneous catalytic system to synthesis of 3,4-dihydropyrimidin-2(1H)-ones. Der Pharma Chemica 7:241–247

    CAS  Google Scholar 

  52. Devasia J, Nizam A, Muthukumar D et al (2023) A concise route to fused tetrazolo scaffolds through 10-camphor sulfonic acid auto-tandem homogeneous catalysis and mechanistic investigation. J Mol Liq. https://doi.org/10.1016/j.molliq.2023.121510

    Article  Google Scholar 

  53. Maskrey TS, Frischling MC, Rice ML, Wipf P (2018) A five-component Biginelli-Diels-alder cascade reaction. Front Chem. https://doi.org/10.3389/fchem.2018.00376

    Article  PubMed  PubMed Central  Google Scholar 

  54. Boukis AC, Monney B, Meier MAR (2017) Synthesis of structurally diverse 3,4-dihydropyrimidin-2(1H)-ones via sequential Biginelli and Passerini reactions. Beilstein J Organ Chem. https://doi.org/10.3762/bjoc.13.7

    Article  Google Scholar 

  55. Deepa, Aalam MJ, Singh S (2022) Enantioselective biginelli reaction catalyzed by (L)-prolinamide containing imidazolium ionic liquid. ChemistrySelect. https://doi.org/10.1002/slct.202103918

    Article  Google Scholar 

  56. Sheik Mansoor S, Syed Shafi S, Zaheer Ahmed S (2016) An efficient one-pot multicomponent synthesis of 3,4-dihydropyrimidine-2-(1H)-ones/thiones/imines via a Lewis base catalyzed Biginelli-type reaction under solvent-free conditions. Arab J Chem. https://doi.org/10.1016/j.arabjc.2011.09.018

    Article  Google Scholar 

  57. Kappe CO (1997) A reexamination of the mechanism of the Biginelli dihydropyrimidine synthesis. Support for an N-acyliminium ion intermediate. J Organ Chem. https://doi.org/10.1021/jo971010u

    Article  Google Scholar 

  58. Naishima NL, Faizan S, Raju RM et al (2023) Design, synthesis, analysis, evaluation of cytotoxicity against MCF-7 breast cancer cells, 3D qsar studies and egfr, her2 inhibition studies on novel biginelli 1,4-dihydropyrimidines. J Mol Struct. https://doi.org/10.1016/j.molstruc.2022.134848

    Article  Google Scholar 

  59. Suppan T, Mahendran HP, Jeyaraj S et al (2020) Phosphotungstic acid - Jeffamine® hybrid catalyst for one-pot Biginelli reaction starting from benzyl alcohol. Appl Catal A Gen. https://doi.org/10.1016/j.apcata.2020.117734

    Article  Google Scholar 

  60. Halim ME, Akhter K, Ahmed S et al (2020) One pot synthesis of Biginelli 3,4-dihydro-1H-pyrimidin-2-ones and 1,2,3,4-tetrahydro pyrimidines. Bangladesh J Sci Indust Res. https://doi.org/10.3329/bjsir.v55i3.49390

    Article  Google Scholar 

  61. Balraj G, Rammohan K, Anilkumar A et al (2023) An improved eco-friendly and solvent-free method for the one-pot synthesis of tetrahydropyrimidine derivatives via Biginelli condensation reaction using ZrO2/La2O3 catalysts. Results Chem. https://doi.org/10.1016/j.rechem.2022.100691

    Article  Google Scholar 

  62. Najjar M, Nasseri MA, Darroudi M, Allahresani A (2022) Synthesis of dihydropyrimidinone and dihydropyridine derivatives by a GQDs-based magnetically nanocatalyst under solvent-free conditions. J Environ Chem Eng. https://doi.org/10.1016/j.jece.2022.108854

    Article  Google Scholar 

  63. Murashkevich AN, Fedorova OV, Kuznetsova TF et al (2022) Mixed oxides of silicon, titanium, zirconium, modified with carboxylic acids, as heterogeneous catalysts for the asymmetric Biginelli reaction. J Solgel Sci Technol. https://doi.org/10.1007/s10971-022-05896-9

    Article  Google Scholar 

  64. Rostami N, Dekamin MG, Valiey E, FaniMoghadam H (2022) l-Asparagine-EDTA-amide silica-coated MNPs: a highly efficient and nano-ordered multifunctional core-shell organocatalyst for green synthesis of 3,4-dihydropyrimidin-2(1H)-one compounds. RSC Adv. https://doi.org/10.1039/d2ra02935a

    Article  PubMed  PubMed Central  Google Scholar 

  65. Shkurko OP (2022) Bridged 1,3(1,5)-benzoxazocines and 1,3,5-benzoxadiazocines as products of the Hantzsch and Biginelli reactions. Chem Heterocycl Comp. https://doi.org/10.1007/s10593-022-03085-8

    Article  Google Scholar 

  66. Patel HA, Sawant AM, Rao VJ et al (2017) Polyaniline supported FeCl3: an effective heterogeneous catalyst for biginelli reaction. Catal Letters 147:2306–2312. https://doi.org/10.1007/s10562-017-2139-9

    Article  CAS  Google Scholar 

  67. Parthiban D, Karunakaran R, Magesh C (2018) The recyclable bronsted acidic liquid resin mediated eco-benign synthesis of 3,4-dihydropyrimidine-2(1H)-ones and 3,4-dihydropyrimidin-2(1H)-thiones via biginelli reaction. Int Res J Pure Appl Chem 16:1–10. https://doi.org/10.9734/irjpac/2018/40035

    Article  CAS  Google Scholar 

  68. Devendiran P, Kuppusamy MR (2023) An efficient, magnetically separable Fe3O4/HAp nanocomposite catalyzed one-pot synthesis of 5-alkoxycarbonyl-6-methyl-4-aryl-3,4-dihydropyrimidin-2(1H)-one derivatives. Synth Commun 53:1918–1934. https://doi.org/10.1080/00397911.2023.2256014

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Head, Department of Chemistry, The Maharaja Sayajirao University of Baroda, Vadodara for providing necessary laboratory facilities. The funding agency Science and Engineering Research Board, Department of Science and Technology (Award no: EEQ/2022/000473) and Research and Development Cell, The Maharaja Sayajirao University of Baroda (Award no: RDC/Dir./2023-24/19/17) for financially supporting to the corresponding author.

Funding

The funding was provided by Science and Engineering Research Board, Department of Science and Technology (Grant No: EEQ/2022/000473), and Research and Development Cell, The Maharaja Sayajirao University of Baroda (Grant No: RDC/Dir./2023-24/19/17)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Divyesh K. Patel.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 7220 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gujarati, A.V., Bedekar, A.V., Patel, A.L. et al. Polymer Supported Ferric Chloride as Heterogeneous Catalyst for Three Component Biginelli Reaction. Catal Lett (2024). https://doi.org/10.1007/s10562-024-04624-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10562-024-04624-y

Keywords

Navigation