Skip to main content
Log in

Enhanced DeNO(x) Performance of CZ-xS Catalyst Prepared by Sol–Gel Method

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

A series of CZ-xS catalysts for deNO(x) were prepared by sol–gel method. The effects of preparation methods and the amount of sulfuric acid in the sol–gel preparation process on the performance of catalyst were investigated by means of X-ray diffraction (XRD), Raman, X-ray photoelectron spectroscopy (XPS), N2 adsorption–desorption, NH3-temperature programmed desorption (NH3-TPD), H2-temperature-programmed (H2-TPR) and Scanning electron microscope/Energy Dispersive Spectrometer (SEM/EDS). The results showed that when the mass ratio of SO42−/ZrO2 (CZ-0.4S catalyst) was 0.4, the catalytic performance of the catalyst prepared by sol–gel method was greatly improved compared with the sample prepared by coprecipitation + impregnation method. When the space velocity was 220,000 h−1 and the reaction temperature was in range of 290–500 °C, the NO conversion was higher than 90% on CZ-0.4S catalyst. Its excellent denitrification performance was attributed to its larger acidity, higher Ce3+ content, more surface adsorbed oxygen and larger specific surface area.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Zhang L, Shi L, Huang L et al (2014) Rational design of high-performance DeNOx catalysts based on MnxCo3−xO4 nanocages derived from metal−organic frameworks. ACS Catal 4:1753–1763. https://doi.org/10.1021/cs401185c

    Article  CAS  Google Scholar 

  2. Zhu N, Shan W, Lian Z et al (2020) A superior Fe-V-Ti catalyst with high activity and SO2 resistance for the selective catalytic reduction of NO with NH3. J Hazard Mater 382:120970. https://doi.org/10.1016/j.jhazmat.2019.120970

    Article  CAS  PubMed  Google Scholar 

  3. Qi G, Yang RT (2004) Characterization and FTIR studies of MnOx−CeO2 catalyst for low-temperature selective catalytic reduction of NO with NH3. J Phys Chem B 108:15738–15747. https://doi.org/10.1021/jp048431h

    Article  CAS  Google Scholar 

  4. Liu Q, Wang S, Xu G et al (2021) Vanadium substitution as an effective way to enhance the redox ability of tungstophosphoric acid and for application of NH3-SCR. Catal Lett 151:2250–2256. https://doi.org/10.1007/s10562-020-03467-7

    Article  CAS  Google Scholar 

  5. Kowalczyk A, Święs A, Gil B et al (2018) Effective catalysts for the low-temperature NH3-SCR process based on MCM-41 modified with copper by template ion-exchange (TIE) method. Appl Catal B 237:927–937. https://doi.org/10.1016/j.apcatb.2018.06.052

    Article  CAS  Google Scholar 

  6. Song Z, Wang L, Zhang Q et al (2018) Mechanisms study of silicotungstic acid modified CeO2 catalyst for selective catalytic reduction of NO with NH3: effect of pH values. J Taiwan Inst Chem Eng 91:243–250. https://doi.org/10.1016/j.jtice.2018.05.018

    Article  CAS  Google Scholar 

  7. Wang F, Shen B, Zhu S et al (2019) Promotion of Fe and Co doped Mn-Ce/TiO2 catalysts for low temperature NH3-SCR with SO2 tolerance. Fuel 249:54–60. https://doi.org/10.1016/j.fuel.2019.02.113

    Article  CAS  Google Scholar 

  8. Wang X, Liu Y, Yao W et al (2019) Boosting the low-temperature activity and sulfur tolerance of CeZr2O catalysts by antimony addition for the selective catalytic reduction of NO with ammonia. J Colloid Interface Sci 546:152–162. https://doi.org/10.1016/j.jcis.2019.03.031

    Article  CAS  PubMed  Google Scholar 

  9. Wei L, Li X, Mu J et al (2020) Rationally tailored redox properties of a mesoporous Mn–Fe spinel nanostructure for boosting low-temperature selective catalytic reduction of NOx with NH3. ACS Sustain Chem Eng 8:17727–17739. https://doi.org/10.1021/acssuschemeng.0c05862

    Article  CAS  Google Scholar 

  10. Ding S, Liu F, Shi X et al (2015) Significant promotion effect of Mo additive on a novel Ce–Zr mixed oxide catalyst for the selective catalytic reduction of NOx with NH3. ACS Appl Mater Interfaces 7:9497–9506. https://doi.org/10.1021/acsami.5b00636

    Article  CAS  PubMed  Google Scholar 

  11. Gao X, Jiang Y, Fu Y et al (2010) Preparation and characterization of CeO2/TiO2 catalysts for selective catalytic reduction of NO with NH3. Catal Commun 11:465–469. https://doi.org/10.1016/j.catcom.2009.11.024

    Article  CAS  Google Scholar 

  12. Reddy BM, Khan A, Yamada Y et al (2003) Structural characterization of CeO2−TiO2 and V2O5/CeO2−TiO2 catalysts by Raman and XPS techniques. J Phys Chem B 107:5162–5167. https://doi.org/10.1021/jp0344601

    Article  CAS  Google Scholar 

  13. Ma L, Seo CY, Nahata M et al (2018) Shape dependence and sulfate promotion of CeO2 for selective catalytic reduction of NO with NH3. Appl Catal B 232:246–259. https://doi.org/10.1016/j.apcatb.2018.03.065

    Article  CAS  Google Scholar 

  14. Zhang L, Pierce J, Leung VL et al (2013) Characterization of Ceria’s interaction with NOx and NH3. J Phys Chem C 117:8282–8289. https://doi.org/10.1021/jp401442e

    Article  CAS  Google Scholar 

  15. Liu S, Yao P, Lin Q et al (2021) Optimizing acid promoters of Ce-based NH3-SCR catalysts for reducing NOx emissions. Catal Today 382:34–41. https://doi.org/10.1016/j.cattod.2021.05.007

    Article  CAS  Google Scholar 

  16. Baidya T, Gupta A, Deshpandey PA et al (2009) High oxygen storage capacity and high rates of CO oxidation and NO reduction catalytic properties of Ce1–x Snx O2 and Ce0.78 Sn0.2 Pd0.02 O2-δ. J Phys Chem C 113:4059–4068. https://doi.org/10.1021/jp8060569

    Article  CAS  Google Scholar 

  17. Wang X, Liu Y, Wu Z (2020) The poisoning mechanisms of different zinc species on a ceria-based NH3-SCR catalyst and the co-effects of zinc and gas-phase sulfur/chlorine species. J Colloid Interface Sci 566:153–162. https://doi.org/10.1016/j.jcis.2020.01.058

    Article  CAS  PubMed  Google Scholar 

  18. Zhang J, Yang J, Wang J et al (2017) Surface oxygen vacancies dominated CeO2 as efficient catalyst for imine synthesis: influences of different cerium precursors. Mol Catal 443:131–138. https://doi.org/10.1016/j.mcat.2017.09.030

    Article  CAS  Google Scholar 

  19. Boningari T, Somogyvari A, Smirniotis PG (2017) Ce-based catalysts for the selective catalytic reduction of NOx in the presence of excess oxygen and simulated diesel engine exhaust conditions. Ind Eng Chem Res 56:5483–5494. https://doi.org/10.1021/acs.iecr.7b00045

    Article  CAS  Google Scholar 

  20. Xu W, Yu Y, Zhang C et al (2008) Selective catalytic reduction of NO by NH3 over a Ce/TiO2 catalyst. Catal Commun 9:1453–1457. https://doi.org/10.1016/j.catcom.2007.12.012

    Article  CAS  Google Scholar 

  21. Yi T, Zhang Y, Li J et al (2016) Promotional effect of H3PO4 on ceria catalyst for selective catalytic reduction of NO by NH3. Chin J Catal 37:300–307. https://doi.org/10.1016/S1872-2067(15)60977-9

    Article  CAS  Google Scholar 

  22. Han Z, Li X, Wang X et al (2022) Insight into the promoting effect of support pretreatment with sulfate acid on selective catalytic reduction performance of CeO2/ZrO2 catalysts. J Colloid Interface Sci 608:2718–2729. https://doi.org/10.1016/j.jcis.2021.10.191

    Article  CAS  PubMed  Google Scholar 

  23. Kustov AL, Kustova MYu, Fehrmann R et al (2005) Vanadia on sulphated-ZrO2, a promising catalyst for NO abatement with ammonia in alkali containing flue gases. Appl Catal B 58:97–104. https://doi.org/10.1016/j.apcatb.2004.11.016

    Article  CAS  Google Scholar 

  24. Shan W, Liu F, Yu Y et al (2014) The use of ceria for the selective catalytic reduction of NOx with NH3. Chin J Catal 35:1251–1259. https://doi.org/10.1016/S1872-2067(14)60155-8

    Article  CAS  Google Scholar 

  25. Zou W, Ge C, Lu M et al (2015) Engineering the NiO/CeO2 interface to enhance the catalytic performance for CO oxidation. RSC Adv 5:98335–98343. https://doi.org/10.1039/C5RA20466F

    Article  CAS  Google Scholar 

  26. Taniguchi T, Watanabe T, Sugiyama N et al (2009) Identifying defects in ceria-based nanocrystals by UV resonance Raman spectroscopy. J Phys Chem C 113:19789–19793. https://doi.org/10.1021/jp9049457

    Article  CAS  Google Scholar 

  27. Gao S, Chen X, Wang H et al (2013) Ceria supported on sulfated zirconia as a superacid catalyst for selective catalytic reduction of NO with NH3. J Colloid Interface Sci 394:515–521. https://doi.org/10.1016/j.jcis.2012.12.034

    Article  CAS  PubMed  Google Scholar 

  28. Bautista P, Faraldos M, Yates M et al (2007) Influence of sulphate doping on Pd/zirconia based catalysts for the selective catalytic reduction of nitrogen oxides with methane. Appl Catal B 71:254–261. https://doi.org/10.1016/j.apcatb.2006.08.020

    Article  CAS  Google Scholar 

  29. Peng Y, Liu C, Zhang X et al (2013) The effect of SiO2 on a novel CeO2–WO3/TiO2 catalyst for the selective catalytic reduction of NO with NH3. Appl Catal B 140–141:276–282. https://doi.org/10.1016/j.apcatb.2013.04.030

    Article  CAS  Google Scholar 

  30. Lu X, Song C, Jia S et al (2015) Low-temperature selective catalytic reduction of NOX with NH3 over cerium and manganese oxides supported on TiO2–graphene. Chem Eng J 260:776–784. https://doi.org/10.1016/j.cej.2014.09.058

    Article  CAS  Google Scholar 

  31. Guan B, Lin H, Zhu L et al (2012) Effect of ignition temperature for combustion synthesis on the selective catalytic reduction of NO with NH3 over Ti0.9Ce0.05V0.05O2−δ nanocomposites catalysts prepared by solution combustion route. Chem Eng J 181–182:307–322. https://doi.org/10.1016/j.cej.2011.11.083

    Article  CAS  Google Scholar 

  32. Fan J, Ning P, Song Z et al (2018) Mechanistic aspects of NH3-SCR reaction over CeO2/TiO2-ZrO2-SO42− catalyst: in situ DRIFTS investigation. Chem Eng J 334:855–863. https://doi.org/10.1016/j.cej.2017.10.011

    Article  CAS  Google Scholar 

  33. Song Z, Ning P, Zhang Q et al (2016) The role of surface properties of silicotungstic acid doped CeO2 for selective catalytic reduction of NOx by NH3: effect of precipitant. J Mol Catal A Chem 413:15–23. https://doi.org/10.1016/j.molcata.2015.12.009

    Article  CAS  Google Scholar 

  34. Li X, Ren S, Xing X et al (2022) New insight on optimization of acid promoter over Fe/Zr catalyst for selective catalytic reduction of NO with NH3. J Environ Chem Eng 10:108925. https://doi.org/10.1016/j.jece.2022.108925

    Article  CAS  Google Scholar 

  35. Liu X, Zhou K, Wang L et al (2009) Oxygen vacancy clusters promoting reducibility and activity of ceria nanorods. J Am Chem Soc 131:3140–3141. https://doi.org/10.1021/ja808433d

    Article  CAS  PubMed  Google Scholar 

  36. Xiong Z, Wang W, Li J et al (2022) The synergistic promotional effect of W doping and sulfate modification on the NH3-SCR activity of CeO2 catalyst. Mol Catal 522:112250. https://doi.org/10.1016/j.mcat.2022.112250

    Article  CAS  Google Scholar 

  37. Jiang Y, Xing Z, Wang X et al (2015) Activity and characterization of a Ce–W–Ti oxide catalyst prepared by a single step sol–gel method for selective catalytic reduction of NO with NH3. Fuel 151:124–129

    Article  CAS  Google Scholar 

  38. Xiong Z, Li Z, Li C et al (2021) Starch bio-template synthesis of W-doped CeO2 for selective catalytic reduction of NO with NH3: influence of ammonia titration. J Phys Chem Solids 148:109727. https://doi.org/10.1016/j.jpcs.2020.109727

    Article  CAS  Google Scholar 

  39. Wu Q, Chen X, Mi J et al (2021) The absence of oxygen in sulfation promotes the performance of the sulfated CeO2 catalyst for low-temperature selective catalytic reduction of NOx by NH3: redox property versus acidity. ACS Sustain Chem Eng 9:967–979. https://doi.org/10.1021/acssuschemeng.0c08427

    Article  CAS  Google Scholar 

  40. Wang W, Xiong Z, He W et al (2021) Influence of thiourea modification on the NH3-SCR activity of CeO2: simultaneous tuning morphology and surface acidity. J Energy Inst 98:322–333. https://doi.org/10.1016/j.joei.2021.07.009

    Article  CAS  Google Scholar 

  41. Zhang P, Wang P, Chen A et al (2021) Alkali-resistant catalytic reduction of NOx by Using Ce–O–B alkali-capture sites. Environ Sci Technol 55:11970–11978. https://doi.org/10.1021/acs.est.1c02882

    Article  CAS  PubMed  Google Scholar 

  42. Yan L, Wang F, Wang P et al (2020) Unraveling the unexpected offset effects of Cd and SO2 deactivation over CeO2-WO3/TiO2 catalysts for NOx reduction. Environ Sci Technol 54:7697–7705. https://doi.org/10.1021/acs.est.0c01749

    Article  CAS  PubMed  Google Scholar 

  43. Zhang R, Zhong Q, Zhao W et al (2014) Promotional effect of fluorine on the selective catalytic reduction of NO with NH3 over CeO2-TiO2 catalyst at low temperature. Appl Surf Sci 289:237–244. https://doi.org/10.1016/j.apsusc.2013.10.143

    Article  CAS  Google Scholar 

  44. Guo R, Zhou Y, Pan W et al (2013) Effect of preparation methods on the performance of CeO2/Al2O3 catalysts for selective catalytic reduction of NO with NH3. J Ind Eng Chem 19:2022–2025. https://doi.org/10.1016/j.jiec.2013.03.010

    Article  CAS  Google Scholar 

  45. Chen Z, Ren S, Zhou Y et al (2022) Comparison of Mn doped CeO2 with different exposed facets for NH3-SCR at low temperature. J Energy Inst 105:114–120. https://doi.org/10.1016/j.joei.2022.08.007

    Article  CAS  Google Scholar 

  46. Li X, Ren S, Xing X et al (2023) Boosting the catalytic performance of Fe/Zr catalyst by tungsten addition for selective catalytic reduction of NO with ammonia. Fuel 334:126633. https://doi.org/10.1016/j.fuel.2022.126633

    Article  CAS  Google Scholar 

  47. Zhang Y, Cui M, Wang H et al (2021) Effects of ammonia concentration in hydrothermal treatment on structure and redox properties of cerium zirconium solid solution. J Rare Earths 39:419–426. https://doi.org/10.1016/j.jre.2020.07.018

    Article  CAS  Google Scholar 

  48. Cui Y, Fang R, Shang H et al (2015) The influence of precipitation temperature on the properties of ceria–zirconia solid solution composites. J Alloy Compd 628:213–221. https://doi.org/10.1016/j.jallcom.2014.12.149

    Article  CAS  Google Scholar 

  49. Rumruangwong M, Wongkasemjit S (2006) Synthesis of ceria–zirconia mixed oxide from cerium and zirconium glycolates via sol–gel process and its reduction property. Applied Organom Chem 20:615–625. https://doi.org/10.1002/aoc.1106

    Article  CAS  Google Scholar 

  50. Waqif M, Bazin P, Saur O et al (1997) Study of ceria sulfation. Appl Catal B 11:193–205. https://doi.org/10.1016/S0926-3373(96)00040-9

    Article  CAS  Google Scholar 

  51. Chang H, Ma L, Yang S et al (2013) Comparison of preparation methods for ceria catalyst and the effect of surface and bulk sulfates on its activity toward NH3-SCR. J Hazard Mater 262:782–788. https://doi.org/10.1016/j.jhazmat.2013.09.043

    Article  CAS  PubMed  Google Scholar 

  52. Damyanova S, Perez CA, Schmal M et al (2002) Characterization of ceria-coated alumina carrier. Appl Catal A 234:271–282. https://doi.org/10.1016/S0926-860X(02)00233-8

    Article  CAS  Google Scholar 

  53. Li X, Ren S, Liu L et al (2023) Superior PbO-resistance of CeO2/ZrO2 catalyst promoted by solid superacid SO42−/ZrO2 for selective catalytic reduction of NOx with NH3. Fuel 332:126103. https://doi.org/10.1016/j.fuel.2022.126103

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (91745116).

Author information

Authors and Affiliations

Authors

Contributions

YL: Conceptualization, Methodology, Resources. YL: Writing—Original Draft. XW and DY and PZ: Validation, Investigation. XW and JG: Visualization. XT: Supervision. JG and YL: Writing—Reviewing and Editing.

Corresponding authors

Correspondence to Yuan Li or Jian Gao.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper. Moreover, there is no conflict of interest for each contributing author.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2227 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Liu, Y., Zhang, P. et al. Enhanced DeNO(x) Performance of CZ-xS Catalyst Prepared by Sol–Gel Method. Catal Lett (2024). https://doi.org/10.1007/s10562-024-04623-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10562-024-04623-z

Keywords

Navigation