Skip to main content
Log in

Photocatalytic Oxidation of Printing and Dyeing Wastewater by Foam Ceramics Loaded with Cu and N–TiO2

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Copper (Cu) and nitrogen (N) co-doped titanium dioxide (TiO2) loaded catalysts were synthesized through the sol–gel process. Butyl titanate was used as the precursor, while urea and blue vitriol served as the N and Cu sources, respectively. These materials were applied to foam ceramics using the dip-coating method, which was followed by a photocatalytic oxidation test was carried out using an RhB solution to simulated dye wastewater. The catalysts were characterized via scanning electron microscopy, X-ray diffraction, and ultraviolet–visible spectrophotometry. The results revealed that the modified TiO2 was well dispersed on the foam ceramic surface, with all nanoparticles exhibiting an anatase phase structure. Additionally, the visible light responsiveness of the TiO2 was optimal. The study further investigated the effects of Cu and N–TiO2 catalysts on the photocatalytic oxidation of dyeing wastewater under UV light.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig.12

Similar content being viewed by others

References

  1. Benkhaya S, M’rabet S, El Harfi A (2020) A review on classifications, recent synthesis and applications of textile dyes. Inorg Chem Commun 115:107891. https://doi.org/10.1016/j.inoche.2020.107891

    Article  CAS  Google Scholar 

  2. Al-Tohamy R, Ali SS, Li F et al (2022) A critical review on the treatment of dye-containing wastewater: ecotoxicological and health concerns of textile dyes and possible remediation approaches for environmental safety. Ecotoxicol Environ Saf 231:113160. https://doi.org/10.1016/j.ecoenv.2021.113160

    Article  CAS  PubMed  Google Scholar 

  3. Lili L (2016) Application of printing and dyeing wastewater treatment engineering. Resour Conserv Environ Protect 06:67–68. https://doi.org/10.3969/j.issn.1673-2251.2016.06.048

    Article  Google Scholar 

  4. Hao XU, Dan QIAO, Zhicheng XU et al (2021) Application of electrocatalytic oxidation technology in organic wastewater treatment. Ind Water Treat 41(03):1–9. https://doi.org/10.11894/iwt.2020-0371

    Article  Google Scholar 

  5. Gamelas SRD, Tomé JPC, Tomé AC, Lourenço LMO (2023) Advances in photocatalytic degradation of organic pollutants in wastewaters: harnessing the power of phthalocyanines and phthalocyanine-containing materials. RSC Adv 13(48):33957–33993. https://doi.org/10.1039/d3ra06598g

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kanakaraju D, Glass BD, Oelgemöller M (2014) Titanium dioxide photocatalysis for pharmaceutical wastewater treatment. Environ Chem Lett 12:27–47. https://doi.org/10.1007/s10311-013-0428-0

    Article  CAS  Google Scholar 

  7. Kansal SK, Kundu P, Sood S et al (2014) Photocatalytic degradation of the antibiotic levofloxacin using highly crystalline TiO2 nanoparticles. New J Chem 38(7):3220–3226. https://doi.org/10.1039/C3NJ01619F

    Article  CAS  Google Scholar 

  8. Espíndola JC, Cristóvão RO, Santos SGS et al (2019) Intensification of heterogeneous TiO2 photocatalysis using the NETmix mili-photoreactor under microscale illumination for oxytetracycline oxidation. Sci Total Environ 681:467–474. https://doi.org/10.1016/j.scitotenv.2019.05.066

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Zeng Y, Chen D, Chen T et al (2019) Study on heterogeneous photocatalytic ozonation degradation of ciprofloxacin by TiO2/carbon dots: kinetic, mechanism and pathway investigation. Chemosphere 227:198–206. https://doi.org/10.1016/j.chemosphere.2019.04.039

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Sandikly N, Kassir M, El Jamal M et al (2019) Comparison of the toxicity of waters containing initially sulfaquinoxaline after photocatalytic treatment by TiO2 and polyaniline/TiO2. Environ Technol. https://doi.org/10.1080/09593330.2019.1630485

    Article  PubMed  Google Scholar 

  11. Gupta S, Tripathi M (2012) A review on the synthesis of TiO2 nanoparticles by solution route. Open Chem 10(2):279–294. https://doi.org/10.2478/s11532-011-0155-y

    Article  CAS  Google Scholar 

  12. Sachs M, Pastor E, Kafizas A et al (2016) Evaluation of surface state mediated charge recombination in anatase and rutile TiO2. Jf Phys Chem Lett 7(19):3742–3746. https://doi.org/10.1021/acs.jpclett.6b01501

    Article  CAS  Google Scholar 

  13. Talat-Mehrabad J, Khosravi M, Modirshahla N et al (2016) Synthesis, characterization, and photocatalytic activity of co-doped Ag–, Mg–TiO2-P25 by photodeposition and impregnation methods. Desalin Water Treat 57(22):10451–10461. https://doi.org/10.1080/19443994.2015.1036780

    Article  CAS  Google Scholar 

  14. Chen Q, Zhang Y, Zhang D et al (2017) Ag and N co-doped TiO2 nanostructured photocatalyst for printing and dyeing wastewater. J Water Process Eng 16:14–20. https://doi.org/10.1016/j.jwpe.2016.11.007

    Article  Google Scholar 

  15. Asahi R, Morikawa T, Irie H et al (2014) Nitrogen-doped titanium dioxide as visible-light-sensitive photocatalyst: designs, developments, and prospects. Chem Rev 114(19):9824–9852. https://doi.org/10.1021/cr5000738

    Article  CAS  PubMed  Google Scholar 

  16. Chen M, Wang H, Chen X et al (2020) High-performance of Cu-TiO2 for photocatalytic oxidation of formaldehyde under visible light and the mechanism study. Chem Eng J 390:124481. https://doi.org/10.1016/j.cej.2020.124481

    Article  CAS  Google Scholar 

  17. Lee BH, Park S, Kim M et al (2019) Reversible and cooperative photoactivation of single-atom Cu/TiO2 photocatalysts. Nat Mater 18(6):620–626. https://doi.org/10.1038/s41563-019-0344-1

    Article  ADS  CAS  PubMed  Google Scholar 

  18. Zhou J, Gao Y, Zhou Z et al (2020) Activated carbon particles loaded with Fe-TiO2 photovoltaic for synergistic treatment of folic acid wastewater. Ind Water Treat 40(04):39–43. https://doi.org/10.11894/iwt.2019-0455

    Article  Google Scholar 

  19. Reza M, Khaki D, Saleh M et al (2017) Application of doped photocatalysts for organic pollutant degradation—A review. J Environ Manag 198:78–94. https://doi.org/10.1016/j.jenvman.2017.04.099

    Article  CAS  Google Scholar 

  20. Schneider J, Matsuoka M, Takeuchi M et al (2014) Understanding TiO2 photocatalysis: mechanisms and materials. Chem Rev 114(19):9919–9986. https://doi.org/10.1021/cr5001892

    Article  CAS  PubMed  Google Scholar 

  21. Ajayan J, Nirmal D, Mohankumar P et al (2020) A review of photovoltaic performance of organic/inorganic solar cells for future renewable and sustainable energy technologies. Superlattices Microstruct 143:106549. https://doi.org/10.1016/j.spmi.2020.106549

    Article  CAS  Google Scholar 

  22. Wang A, Wu S, Dong J et al (2021) Interfacial facet engineering on the Schottky barrier between plasmonic Au and TiO2 in boosting the photocatalytic CO2 reduction under ultraviolet and visible light irradiation. Chem Eng J 404:127145. https://doi.org/10.1016/j.cej.2020.127145

    Article  ADS  CAS  Google Scholar 

  23. Li XZ, Li FB (2001) Study of Au/Au3+-TiO2 photocatalysts toward visible photooxidation for water and wastewater treatment. Environ Sci Technol 35(11):2381–2387. https://doi.org/10.1021/es001752w

    Article  ADS  CAS  PubMed  Google Scholar 

  24. Mariappan A, Pandi P, Rajeswarapalanichamy R et al (2022) Bandgap and visible-light-induced photocatalytic performance and dye degradation of silver doped HAp/TiO2 nanocomposite by sol-gel method and its antimicrobial activity. Environ Res 211:113079. https://doi.org/10.1016/j.envres.2022.113079

    Article  CAS  PubMed  Google Scholar 

  25. Warren Z, Guaraldo TT, Martins AS et al (2023) Photocatalytic foams for water treatment: a systematic review and meta-analysis. J Environ Chem Eng 11(1):109238. https://doi.org/10.1016/j.jece.2022.109238

    Article  CAS  Google Scholar 

  26. Chen J, Poon CS (2009) Photocatalytic activity of titanium dioxide modified concrete materials—Influence of utilizing recycled glass cullets as aggregates. J Environ Manage 90(11):3436–3442. https://doi.org/10.1016/j.jenvman.2009.05.029

    Article  CAS  PubMed  Google Scholar 

  27. Katheresan V, Kansedo J, Lau SY (2018) Efficiency of various recent wastewater dye removal methods: a review. J Environ Chem Eng 6(4):4676–4697. https://doi.org/10.1016/j.jece.2018.06.060

    Article  CAS  Google Scholar 

  28. Rico-Santacruz M, García-Muñoz P, Keller V et al (2019) Alveolar TiO2-β-SiC photocatalytic composite foams with tunable properties for water treatment. Catal Today 328:235–242. https://doi.org/10.1016/j.cattod.2018.11.059

    Article  CAS  Google Scholar 

  29. Choi W, Termin A, Hoffmann MR (1994) The role of metal ion dopants in quantum-sized TiO2: correlation between photoreactivity and charge carrier recombination dynamics. J Phys Chem 98(51):13669–13679. https://doi.org/10.1021/j100102a038

    Article  Google Scholar 

  30. Wei Y, Ji J, Liang F et al (2023) Pd/P–CeO2–Al2O3 coatings supported on foam ceramic with controlled morphology for high-performance CO2 methanation. Ceram Int 49(22):35071–35081. https://doi.org/10.1016/j.ceramint.2023.08.180

    Article  CAS  Google Scholar 

  31. Banhart J (2001) Manufacture, characterisation and application of cellular metals and metal foams. Prog Mater Sci 46(6):559–632. https://doi.org/10.1016/S0079-6425(00)00002-5

    Article  CAS  Google Scholar 

  32. Jaiswal R, Bharambe J, Patel N et al (2015) Copper and nitrogen co-doped TiO2 photocatalyst with enhanced optical absorption and catalytic activity. Appl Catal B 168:333–341. https://doi.org/10.1016/j.apcatb.2014.12.053

    Article  CAS  Google Scholar 

  33. Zhao Z, Omer AA, Qin Z, Osman S, Xia L, Singh RP (2019) Cu/N-codoped TiO2 prepared by the sol-gel method for phenanthrene removal under visible light irradiation. Environ Sci Pollut Res 27:17530–17540. https://doi.org/10.1007/s11356-019-05787-7

    Article  CAS  Google Scholar 

  34. Wang Z (2017) Preparation, modification and photocatalytic properties of titanium dioxide nanomaterials. Jilin University

  35. Survase AA, Kanase SS (2023) Green synthesis of TiO2 nanospheres from isolated Aspergillus eucalypticola SLF1 and its multifunctionality in nanobioremediation of CI reactive blue 194 with antimicrobial and antioxidant activity. Ceram Int 49(10):14964–14980. https://doi.org/10.1016/j.ceramint.2023.01.079

    Article  CAS  Google Scholar 

  36. Dhonde M, Sahu Dhonde K, Purohit K et al (2019) Facile synthesis of Cu/N co-doped TiO2 nanoparticles and their optical and electrical properties. Indian J Phys 93(1):27–32. https://doi.org/10.1007/s12648-018-1275-4

    Article  ADS  CAS  Google Scholar 

  37. Song KX, Zhou JH, Bao JC et al (2008) Photocatalytic activity of (copper, nitrogen)-codoped titanium dioxide nanoparticles. J Am Ceram Soc 91:1369–1371. https://doi.org/10.1111/j.1551-2916.2008.02291.x

    Article  CAS  Google Scholar 

  38. Xueqing R, Qiaoling Z, Yanfen Z et al (2023) Preparation of Cu/N-TiO2 nano photocatalyst using high gravity technology for photodegradation of phenol wastewater. Chin Pet Process Pe Technol 25(1):151

    Google Scholar 

  39. He RM, Zhang QL, Liu YZ et al (2021) Preparation of Fe and Co co-doped TiO2 by precipitation method in an impinging stream rotating packed bed for photodegradation of phenolwastewater. Adv Appl Ceram 9:6–8. https://doi.org/10.1080/17436753.2021.1904766

    Article  CAS  Google Scholar 

  40. Chen DM, Jiang ZY, Geng JQ et al (2007) Carbon and nitrogen co-doped TiO2 with enhanced visible-light photocatalytic activity. Ind Eng Chem Res 46:2741–2746. https://doi.org/10.1021/ie061491k

    Article  CAS  Google Scholar 

  41. Hou C, Liu W (2018) One-step synthesis of OH-TiO2/TiOF2 nanohybrids and their enhanced solar light photocatalytic performance. R Soc Open Sci 5(6):172005. https://doi.org/10.1098/rsos.172005

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  42. Jimenez-Relinque E, Castellote M (2018) Hydroxyl radical and free and shallowly trapped electron generation and electron/hole recombination rates in TiO2 photocatalysis using different combinations of anatase and rutile. Appl Catal A 565:20–25. https://doi.org/10.1016/j.apcata.2018.07.045

    Article  CAS  Google Scholar 

  43. Yin H, Zhang C, Bai X, Yang Z, Liu Z (2022) Tuning electrochemical properties of silver nanomaterials by doping with boron: application for highly non-enzymatic sensing of hydrogen peroxide. ChemistrySelect. https://doi.org/10.1002/slct.202201310

    Article  Google Scholar 

  44. Liang H, Zhang G, Li Z, Zhang Y, Peng F (2023) Catalytic hydrogenation of CO2 to methanol over Cu-based catalysts: active sites profiling and regulation strategy as well as reaction pathway exploration. Fuel Process Technol. https://doi.org/10.1016/j.fuproc.2023.107995

    Article  Google Scholar 

  45. Yin Y, Jiang B, Liu Y et al (2023) A new type of composite catalyst α-nBACoPc/TiO2 for the synergistic photo-catalytic degradation of dyes. Catal Lett. https://doi.org/10.1007/s10562-023-04507-8

    Article  Google Scholar 

Download references

Acknowledgements

This research was funded by the Serve Local Projects of Liaoning Provincial Department of Education (No. lnfw202009); China National Critical Project for Science and Technology on Water Pollution Prevention and Control (No. 2018ZX07601002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Chao.

Ethics declarations

Conflict of interest

The authors declare no confict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chao, L., Wang, Z. & He, J. Photocatalytic Oxidation of Printing and Dyeing Wastewater by Foam Ceramics Loaded with Cu and N–TiO2. Catal Lett (2024). https://doi.org/10.1007/s10562-024-04614-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10562-024-04614-0

Keywords

Navigation