Skip to main content
Log in

TiO2-Based Double-Shelled Homojunction Hollow Spheres Decorated with Spatially Separated Cocatalyst for Enhanced Photocatalytic Hydrogen Evolution

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Efficient separation of photogenerated carriers and surface reactions is the crucial factor in achieving successful photocatalytic water splitting. Herein, a novel Pt@Co-T@T@M hollow sphere was prepared by a template-assisted method. Pt was anchored on the inner surface of Co-doped TiO2 shell, serving as electron collectors and active sites for reduction reaction, while MnOX was immobilized on the outer surface of TiO2 shell for oxidation reaction. Under simulated one-sun (AM 1.5G) illumination, the as-prepared Pt@Co-T@T@M hollow spheres exhibited a remarkable hydrogen evolution rate of 7.304 mmol g−1 h−1, which is 114 times higher than that of T@T hollow spheres. The exceptional photocatalytic water-splitting performance is attributed to the synergistic effect between homojunction and spatial dual-cocatalyst, which promotes enhanced spatial separation of photogenerated carriers and reduces recombination. This study highlights the importance of precise and rational control over photocatalyst structure for achieving highly efficient water splitting.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Cao S, Piao L (2020) Considerations for a more accurate evaluation method for photocatalytic water splitting. Angew Chem Int Ed Engl 59(42):18312–18320

    Article  CAS  PubMed  Google Scholar 

  2. Lin F, Boettcher SW (2014) Adaptive semiconductor/electrocatalyst junctions in water-splitting photoanodes. Nat Mater 13(1):81–86

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Ng KH, Lai SY, Cheng CK, Cheng YW, Chong CC (2021) Photocatalytic water splitting for solving energy crisis: myth, fact or busted? Chem Eng J 417:128847

    Article  CAS  Google Scholar 

  4. Singla S, Sharma S, Basu S, Shetti NP, Aminabhavi TM (2021) Photocatalytic water splitting hydrogen production via environmental benign carbon based nanomaterials. Int J Hydrogen Energy 46(68):33696–33717

    Article  CAS  Google Scholar 

  5. Chen JS, Tan YL, Li CM et al (2010) Constructing hierarchical spheres from large ultrathin anatase TiO2 nanosheets with nearly 100% exposed (001) facets for fast reversible lithium storage. J Am Chem Soc 132(17):6124–6130

    Article  CAS  PubMed  Google Scholar 

  6. Ngaw CK, Xu Q, Tan TTY, Hu P, Cao S, Loo JSC (2014) A strategy for in-situ synthesis of well-defined core–shell Au@TiO2 hollow spheres for enhanced photocatalytic hydrogen evolution. Chem Eng J 257:112–121

    Article  CAS  Google Scholar 

  7. Tran PD, Xi L, Batabyal SK, Wong LH, Barber J, Loo JS (2012) Enhancing the photocatalytic efficiency of TiO2 nanopowders for H2 production by using non-noble transition metal co-catalysts. Phys Chem Chem Phys 14(33):11596–11599

    Article  CAS  PubMed  Google Scholar 

  8. Khan H, Charles H, Lee CS (2023) Fabrication of noble-metal-free copper-doped TiO2 nanofibers synergized with acetic acid-treated g-C3N4 nanosheets for enhanced photocatalytic hydrogen evolution. Appl Surf Sci 607:155068

    Article  CAS  Google Scholar 

  9. Kudo A, Miseki Y (2009) Heterogeneous photocatalyst materials for water splitting. Chem Soc Rev 38(1):253–278

    Article  CAS  PubMed  Google Scholar 

  10. Li X, Yu J, Low J, Fang Y, Xiao J, Chen X (2015) Engineering heterogeneous semiconductors for solar water splitting. J Mater Chem A 3(6):2485–2534

    Article  CAS  Google Scholar 

  11. Hu J, Xie J, Jia W et al (2020) Interesting molecule adsorption strategy induced energy band tuning: boosts 43 times photocatalytic Water splitting ability for commercial TiO2. Appl Catal B 268:118753

    Article  CAS  Google Scholar 

  12. Kotesh Kumar M, Naresh G, Vijay Kumar V, Sai Vasista B, Sasikumar B, Venugopal A (2021) Improved H2 yields over Cu-Ni-TiO2 under solar light irradiation: behaviour of alloy nano particles on photocatalytic H2O splitting. Appl Catal B 299:120654

    Article  Google Scholar 

  13. Basavarajappa PS, Patil SB, Ganganagappa N, Reddy KR, Raghu AV, Reddy CV (2020) Recent progress in metal-doped TiO2, non-metal doped/codoped TiO2 and TiO2 nanostructured hybrids for enhanced photocatalysis. Int J Hydrogen Energy 45(13):7764–7778

    Article  CAS  Google Scholar 

  14. Zhang K, Wang X, He T, Guo X, Feng Y (2014) Preparation and photocatalytic activity of B-N co-doped mesoporous TiO2. Powder Technol 253:608–613

    Article  CAS  Google Scholar 

  15. Ge H, Xu F, Cheng B, Yu J, Ho W (2019) S-scheme heterojunction TiO2/CdS nanocomposite nanofiber as H2-production photocatalyst. ChemCatChem 11(24):6301–6309

    Article  CAS  Google Scholar 

  16. Kulmas M, Paterson L, Höflich K et al (2016) Composite nanostructures of TiO2 and ZnO for water splitting application: atomic layer deposition growth and density functional theory investigation. Adv Funct Mater 26(27):4882–4889

    Article  CAS  Google Scholar 

  17. Wang X-j, Yang W-y, Li F-t, Xue Y-b, Liu R-h, Hao Y-j (2013) in situ microwave-assisted synthesis of porous N-TiO2/g-C3N4 heterojunctions with enhanced visible-light photocatalytic properties. Ind Eng Chem Res 52(48):17140–17150

    Article  CAS  Google Scholar 

  18. Yu X, Zhang J, Zhao Z et al (2015) NiO–TiO2 p–n heterostructured nanocables bridged by zero-bandgap rGO for highly efficient photocatalytic water splitting. Nano Energy 16:207–217

    Article  CAS  Google Scholar 

  19. Khan H, Pawar RC, Charles H, Sunyong Lee C (2023) Cu-doped TiO2 nanofibers coated with 1T MoSe2 nanosheets providing a conductive pathway for the electron separation in CO2 photoreduction. Appl Surf Sci 636:157832

    Article  CAS  Google Scholar 

  20. Ran J, Zhang J, Yu J, Jaroniec M, Qiao SZ (2014) Earth-abundant cocatalysts for semiconductor-based photocatalytic water splitting. Chem Soc Rev 43(22):7787–7812

    Article  CAS  PubMed  Google Scholar 

  21. Wang Z, Wu W, Xu Q et al (2017) Type-II hetero-junction dual shell hollow spheres loaded with spatially separated cocatalyst for enhancing visible light hydrogen evolution. Nano Energy 38:518–525

    Article  CAS  Google Scholar 

  22. Zhang J, Yu Z, Gao Z et al (2017) Porous TiO2 nanotubes with spatially separated platinum and CoO(x) cocatalysts produced by atomic layer deposition for photocatalytic hydrogen production. Angew Chem Int Ed Engl 56(3):816–820

    Article  CAS  PubMed  Google Scholar 

  23. Cao B, Li G, Li H (2016) Hollow spherical RuO2 @TiO2 @Pt bifunctional photocatalyst for coupled H2 production and pollutant degradation. Appl Catal B 194:42–49

    Article  CAS  Google Scholar 

  24. Liu L, Zou W, Gu X et al (2013) Synthesis of Pt@TiO2@MnOx hollow spheres with high spatial charge separation efficiency for photocatalytic overall water splitting. J Mater Chem A. https://doi.org/10.1039/c3ta13872k

    Article  Google Scholar 

  25. Han S, Pu Y-C, Zheng L, Zhang JZ, Fang X (2015) Shell-thickness dependent electron transfer and relaxation in type-II core–shell CdS/TiO2 structures with optimized photoelectrochemical performance. J Mater Chem A 3(45):22627–22635

    Article  CAS  Google Scholar 

  26. Jiang Z, Wei W, Mao D et al (2015) Silver-loaded nitrogen-doped yolk-shell mesoporous TiO2 hollow microspheres with enhanced visible light photocatalytic activity. Nanoscale 7(2):784–797

    Article  ADS  CAS  PubMed  Google Scholar 

  27. Qi J, Zhao K, Li G et al (2014) Multi-shelled CeO2 hollow microspheres as superior photocatalysts for water oxidation. Nanoscale 6(8):4072–4077

    Article  ADS  CAS  PubMed  Google Scholar 

  28. Xiao M, Wang Z, Lyu M et al (2019) Hollow nanostructures for photocatalysis: advantages and challenges. Adv Mater 31(38):e1801369

    Article  PubMed  Google Scholar 

  29. Zhang H, Du G, Lu W, Cheng L, Zhu X, Jiao Z (2012) Porous TiO2 hollow nanospheres: synthesis, characterization and enhanced photocatalytic properties. CrystEngComm 14(10):3793–3801

    Article  CAS  Google Scholar 

  30. Zhang P, Lou XWD (2019) Design of heterostructured hollow photocatalysts for solar-to-chemical energy conversion. Adv Mater 31(29):e1900281

    Article  PubMed  Google Scholar 

  31. Wang S, Guan BY, Wang X, Lou XWD (2018) Formation of hierarchical Co9S8@ZnIn2S4 heterostructured cages as an efficient photocatalyst for hydrogen evolution. J Am Chem Soc 140(45):15145–15148

    Article  CAS  PubMed  Google Scholar 

  32. Zheng D, Cao XN, Wang X (2016) Precise formation of a hollow carbon nitride structure with a Janus surface to promote water splitting by photoredox catalysis. Angew Chem Int Ed Engl 55(38):11512–11516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Sun X, Li Y (2004) Colloidal carbon spheres and their core/shell structures with noble-metal nanoparticles. Angew Chem Int Ed Engl 43(5):597–601

    Article  PubMed  Google Scholar 

  34. Gao L, Li Y, Ren J et al (2017) Passivation of defect states in anatase TiO2 hollow spheres with Mg doping: realizing efficient photocatalytic overall water splitting. Appl Catal B 202:127–133

    Article  CAS  Google Scholar 

  35. Song H, You S, Chen T, Jia X (2015) Controlled preparation of TiO2 hollow microspheres constructed by crosslinked nanochains with high photocatalytic activity. J Mater Sci Mater Electron 26(11):8442–8450

    Article  CAS  Google Scholar 

  36. Luo Y, Sun G, Tian B, Zhang J (2022) Facet-heterojunction-based photothermocatalyst CdS-Au-{010}BiVO4{110}-MnOx with excellent synergetic effect for toluene degradation. Chem Eng J 442:135835

    Article  CAS  Google Scholar 

  37. Song H, Li C, Lou Z, Ye Z, Zhu L (2017) Effective formation of oxygen vacancies in black TiO2 nanostructures with efficient solar-driven water splitting. ACS Sustain Chem Eng 5(10):8982–8987

    Article  CAS  Google Scholar 

  38. Bai P, Tong X, Gao Y, Guo P (2019) Oxygen-free water-promoted selective photocatalytic oxidative coupling of amines. Catal Sci Technol 9(20):5803–5811

    Article  CAS  Google Scholar 

  39. Wang Y, Cai J, Wu M et al (2016) Hydrogenated cagelike titania hollow spherical photocatalysts for hydrogen evolution under simulated solar light irradiation. ACS Appl Mater Interfaces 8(35):23006–23014

    Article  ADS  CAS  PubMed  Google Scholar 

  40. Jin J, Wang C, Ren X-N et al (2017) Anchoring ultrafine metallic and oxidized Pt nanoclusters on yolk-shell TiO2 for unprecedentedly high photocatalytic hydrogen production. Nano Energy 38:118–126

    Article  CAS  Google Scholar 

  41. Sadanandam G, Lalitha K, Kumari VD, Shankar MV, Subrahmanyam M (2013) Cobalt doped TiO2: a stable and efficient photocatalyst for continuous hydrogen production from glycerol: water mixtures under solar light irradiation. Int J Hydrogen Energy 38(23):9655–9664

    Article  CAS  Google Scholar 

  42. Li A, Wang T, Chang X et al (2016) Spatial separation of oxidation and reduction co-catalysts for efficient charge separation: Pt@TiO2@MnOx hollow spheres for photocatalytic reactions. Chem Sci 7(2):890–895

    Article  CAS  PubMed  Google Scholar 

  43. Suriya P, Prabhu M, Jagannathan K (2022) Synthesis and structural, optical and photovoltaic characteristics of pure and Ag doped TiO2 nanoparticles for dye sensitized solar cell application. Mater Today Proc 65:100–105

    Article  CAS  Google Scholar 

  44. Hu L, Song H, Pan G et al (2007) Photoluminescence properties of samarium-doped TiO2 semiconductor nanocrystalline powders. J Lumin 127(2):371–376

    Article  CAS  Google Scholar 

  45. Das K, Sharma SN, Kumar M, De SK (2009) Morphology dependent luminescence properties of Co doped TiO2 nanostructures. J Phys Chem C 113(33):14783–14792

    Article  CAS  Google Scholar 

  46. Cruz-Manzo S, Chen R, Greenwood P (2015) An impedance model for analysis of EIS of polymer electrolyte fuel cells under hydrogen peroxide formation in the cathode. J Electroanal Chem 745:28–36

    Article  CAS  Google Scholar 

  47. Shiohara M, Isobe T, Matsushita S, Nakajima A (2016) Decomposition of 2-naphthol in water by TiO2 modified with MnO and CeO. Mater Chem Phys 183:37–43

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21878254) and the Projects of Talents Recruitment of Guangdong University of Petrochemical Technology (2018rc49).

Author information

Authors and Affiliations

Authors

Contributions

FC: conceived the presented idea, conceptualization, methodology, data curation, writing-reviewing, and editing; XH: conducted the experiments, characterizations, and writing-original draft preparation; PJ: conducted the experiments, and characterizations; CZ: conceived the presented idea, writing-reviewing and editing of the revised manuscript.

Corresponding authors

Correspondence to Feng Chen or Caixian Zhao.

Ethics declarations

Conflict of interest

The authors declare there are no conflicts of interest related to the research, authorship, and/or publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 665 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, F., Hou, X., Jiao, P. et al. TiO2-Based Double-Shelled Homojunction Hollow Spheres Decorated with Spatially Separated Cocatalyst for Enhanced Photocatalytic Hydrogen Evolution. Catal Lett (2024). https://doi.org/10.1007/s10562-024-04611-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10562-024-04611-3

Keywords

Navigation