Skip to main content

Advertisement

Log in

An Efficient Photocatalyst with Pt/TiO2@CdS/Co3O4 Hollow Core–Shell Nanostructure for Overall Water Splitting

  • Technical Article
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Photocatalytic split water attracts tremendous research interest because of its outstanding advantages in generating clean energy. Therefore, this work reports the synthesis of Pt/TiO2@CdS/Co3O4 hollow core–shell nanocomposites using a hard template method. The resulting material was then used for photo-induced spontaneous water splitting. The rationally designed hollow core–shell structure of this material not only enhanced the light collection capacity but also improved the separation efficiency of photogenerated carriers owing to its TiO2/CdS heterojunction. The presence of the Pt and Co3O4 catalysts in our novel material resulted in 63.2 and 29.7 μmol/g of H2 and O2 yields, respectively. Our work provides insights into conversion efficiency improvements during visible light-assisted catalytic water splitting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. W. Fang, M. Xing, and J. Zhang, J. Photochem. Photobiol. C 32, 21 (2017).

    Article  Google Scholar 

  2. C. Gao, T. Wei, Y. Zhang, X. Song, Y. Huan, H. Liu, M. Zhao, J. Yu, and X. Chen, Adv. Mater. 31(8), 1806596 (2019).

    Article  Google Scholar 

  3. T. Hisatomi, K. Takanabe, and K.J.C.L. Domen, Catal. Lett. 145(1), 1 (2014).

    Google Scholar 

  4. A. Fujishima, and K. Honda, Nature 238(5358), 37 (1972).

    Article  Google Scholar 

  5. C. Byrne, S. Dervin, D. Hermosilla, N. Merayo, and S.C.J.C.T. Pillai, Catal. Today 380, 199 (2021).

    Article  Google Scholar 

  6. E. Fournière, J.M. Meichtry, E.A. Gautier, A.G. Leyva, M.I.J.J.O.P. Litter, and P.A. Chemiry, J. Photochem. Photobiol. Chem. 411(4), 113205 (2021).

    Article  Google Scholar 

  7. O. Khasawneh, P. Palaniandy, M. Ahmadipour, and H.J.J.O.E.C.E. Mohammadi, J. Environ. Chem. Eng. 9(1), 104921 (2021).

    Article  Google Scholar 

  8. N.T. Nguyen, M. Xia, P.N. Duchesne, L. Wang, and G.A.J.N.L. Ozin, Nano Lett. 21(3), 1311 (2021).

    Article  Google Scholar 

  9. M.T. Noman, M.A. Ashraf, and A. Ali, Environ. Sci. Pollut. Res. Int. 26(4), 3262 (2019).

    Article  Google Scholar 

  10. X. Wang, W. Shi, S. Wang, H. Zhao, J. Lin, Z. Yang, M. Chen, and L. Guo, J. Am. Chem. Soc. 141(14), 5856 (2019).

    Article  Google Scholar 

  11. N.T. Nolan, D.W. Synnott, M.K. Seery, S.J. Hinder, and S.C.J.J.O.H.M. Pillai, J. Hazard. Mater. 211–212, 88 (2011).

    Google Scholar 

  12. D. Singh, N. Singh, S.D. Sharma, C. Kant, C.P. Sharma, R.R. Pandey, and K.K. Saini, J. Sol-Gel Sci. Technol. 58(1), 269 (2011).

    Article  Google Scholar 

  13. R. Camposeco, M. Hinojosa-Reyes, and R.J.I.J.O.H.E. Zanella, Int. J. Hydrog. Energy 46(51), 26074 (2021).

    Article  Google Scholar 

  14. C. Liu, C. Zhang, G. Yin, T. Zhang, and Z.J.A.A.M. Chen, ACS Appl. Mater. Interfaces 13(11), 13301 (2021).

    Article  Google Scholar 

  15. P. Nagababu, S. Ahmed, Y.T. Prabhu, A. Kularkar, and S.S.J.S.R. Rayalu, Sci. Rep. 11(1), 8084 (2021).

    Article  Google Scholar 

  16. O.A. Carrasco-Jaim, L.M. Torres-Martínez, A.M. Huerta-Flores, and G. Chavez-Angulo, J. Photochem. Photobiol. A 410, 113077 (2021).

    Article  Google Scholar 

  17. K. Wang, R. Yu, L. Wang, S. Guan, and L.J.J.O.M.S.M.I.E. Ji, J. Mater. Sci. Mater. Electron. 32(3), 1 (2021).

    Google Scholar 

  18. S. Lettieri, M. Pavone, A. Fioravanti, L.S. Amato, and P.J.M. Maddalena, Materials 14(7), 1645 (2021).

    Article  Google Scholar 

  19. A. Yw, R.B. Lei, A. Pw, A. Zs, and A.J.A.C.B.E. Lz, Appl. Catal. B Environ. 262, 118308 (2020).

    Article  Google Scholar 

  20. B. Gao, M. Sun, W. Ding, Z. Ding, and W.J.A.C.B.E. Liu, Appl. Catal. B Environ. 281, 119492 (2020).

    Article  Google Scholar 

  21. H.F. Ye, R. Shi, X. Yang, W.F. Fu, and Y.J.A.C.B.E. Chen, Appl. Catal. B Environ. 233, 70 (2018).

    Article  Google Scholar 

  22. G. Han, Y.H. Jin, R.A. Burgess, N.E. Dickenson, X.M. Cao, and Y. Sun, J. Am. Chem. Soc. 139(44), 15584 (2017).

    Article  Google Scholar 

  23. X. Ning, and G. Lu, Nanoscale 12(3), 1213 (2020).

    Article  Google Scholar 

  24. C.X. Guo, J. Xie, H. Yang, and C.M. Li, Adv. Sci. 2(12), 1500135 (2015).

    Article  Google Scholar 

  25. D. Ma, J.-W. Shi, Y. Zou, Z. Fan, X. Ji, C. Niu, and L. Wang, Nano Energy 39, 183 (2017).

    Article  Google Scholar 

  26. M. Xing, B. Qiu, M. Du, Q. Zhu, L. Wang, and J. Zhang, Adv. Func. Mater. 27(35), 1702624 (2017).

    Article  Google Scholar 

  27. P. Zhang, D. Luan, and X.W.D. Lou, Adv. Mater. 32(39), 2004561 (2020).

    Article  Google Scholar 

  28. C. Zhu, C. Liu, Y. Zhou, Y. Fu, S. Guo, H. Li, S. Zhao, H. Huang, Y. Liu, and Z.J.A.C.B.E. Kang, Appl. Catal. B Environ. 216, 114 (2017).

    Article  Google Scholar 

  29. D. Jing, and L.J.J.O.P.C.B. Guo, J. Phys. Chem. B. 110(23), 11139 (2006).

    Article  Google Scholar 

  30. R. Shi, H.F. Ye, F. Liang, Z. Wang, K. Li, Y. Weng, Z. Lin, W.F. Fu, C.M. Che, and Y.J.A.M. Chen, Adv. Mater. 30(6), 1705941 (2017).

    Article  Google Scholar 

  31. J. Low, B. Dai, T. Tong, C. Jiang, and J.J.A.M. Yu, Adv. Mater. 31(6), 1802981 (2019).

    Article  Google Scholar 

  32. H. Ge, F. Xu, B. Cheng, J. Yu, and W.J.C. Ho, ChemCatChem 11(24), 6301 (2019).

    Article  Google Scholar 

  33. Y. Qin, H. Li, J. Lu, F. Meng, C. Ma, Y. Yan, and M. Meng, Chem. Eng. J. 384, 123275 (2020).

    Article  Google Scholar 

  34. X. Zhang, A. Chen, Z. Zhang, M. Jiao, and Z. Zhou, Nanoscale Adv. 1(1), 154 (2019).

    Article  Google Scholar 

  35. S. Subudhi, L. Paramanik, S. Sultana, S. Mansingh, P. Mohapatra, and K. Parida, J. Colloid Interface Sci. 568, 89 (2020).

    Article  Google Scholar 

  36. Y.P. Xie, Z.B. Yu, G. Liu, X.L. Ma, and H.M. Cheng, Energy Environ. Sci. 7(6), 1895 (2014).

    Article  Google Scholar 

  37. J.C. Wang, Y. Hou, F.D. Feng, W.X. Wang, W. Shi, W. Zhang, Y. Li, H. Lou, and C.X. Cui, Appl. Surf. Sci. 537, 148014 (2021).

    Article  Google Scholar 

  38. G. Zhang, Z.A. Lan, L. Lin, S. Lin, and X. Wang, Chem. Sci. 7(5), 3062 (2016).

    Article  Google Scholar 

  39. Y. Fan, Y. Liu, H. Cui, W. Wang, Q. Shang, X. Shi, G. Cui, and B. Tang, Nanomaterials 10(12), 2572 (2020).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported financially by Open subject of Key Laboratory of Materials Oriented Chemical Engineering at Universities of Education Department of Xinjiang Uygur Autonomous Region (20201001), Natural Science Foundation of Henan Department of Education (NO. 202300410020), Cross projects of Nanyang Institute of Technology (330078) and students innovation project of Nanyang Institute of technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiyong Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, K., Wu, P., Li, Z. et al. An Efficient Photocatalyst with Pt/TiO2@CdS/Co3O4 Hollow Core–Shell Nanostructure for Overall Water Splitting. JOM 74, 4441–4448 (2022). https://doi.org/10.1007/s11837-022-05496-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-022-05496-6

Navigation