Skip to main content
Log in

CO2 Reforming with Ethanol Over Bimetallic Co(Ni)/ZnO Catalyst with Enhanced Activity: Synergistic Effect of Ni and Co

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

To develop high-performance catalysts for greenhouse gas CO2 reforming with ethanol (EDR) is progressively inspired by the urgent requirement of CO2 elimination in order to meet with the sustainable development. In this work, the bimetallic Co(Ni)/ZnO catalyst derived from MOFs was investigated in detail with a focus on the effect of Ni dopant. The EDR results indicated that the bimetallic Co(Ni)/ZnO catalyst presented better activity as well as less formation of byproducts in comparison with the monometallic Co/ZnO catalyst. 100% of ethanol conversion was obtained at 500 °C for Co(Ni)/ZnO versus 650 °C for Co/ZnO. Moreover, no acetone formation was observed over Co(Ni)/ZnO catalyst while the concentration of acetone in Co/ZnO was as high as 10 mol%. Characterization results depicted that the strong synergistic effect between Ni and Co in Co(Ni)/ZnO catalyst might greatly stabilize active metal cobalt with smaller particle size, improve the reducibility and facilitate the generation of oxygen defects, thereby enhancing the catalytic performance. To a certain extent, this work might contribute to the design of efficient catalysts for other catalytic applications.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 2

Similar content being viewed by others

References

  1. Bac S, Keskin S, Avci AK (2020) Recent advances in sustainable syngas production by catalytic CO2 reforming of ethanol and glycerol. Sustain Energ Fuels 4:1029–1047

    Article  CAS  Google Scholar 

  2. Shi Y, Wang L, Wu MM, Wang FG (2023) Order-of-magnitude increase in rate of methane dry reforming over Ni/CeO2-SiC catalysts by microwave catalysis. Appl Catal B 337:122927

    Article  CAS  Google Scholar 

  3. Zawadzki A, Bellido JDA, Lucrédio AF, Assaf EM (2014) Dry reforming of ethanol over supported Ni catalysts prepared by impregnation with methanolic solution. Fuel Process Technol 128:432–440

    Article  CAS  Google Scholar 

  4. Bahari MB, Phuc NHH, Abdullah B, Alenazey F, Vo DVN (2016) Ethanol dry reforming for syngas production over Ce-promoted Ni/Al2O3 catalyst. J Environ Chem Eng 4:4830–4838

  5. Lopez Ortiz A, Pallares Samano RB, Zaragoza MJM, Collins-Martinez V (2015) Thermodynamic analysis and process simulation for the H2 production by dry reforming of ethanol with CaCO3 Int J Hydrogen Energy 40:17172–17179

  6. Alipour Z, Borugadda VB, Wang H, Dalai AK (2023) Syngas production through dry reforming: a review on catalysts and their materials, preparation methods and reactor type. Chem. Eng. J. 452:139416

    Article  CAS  Google Scholar 

  7. Sharifianjazi F, Esmaeilkhanian A, Bazil L, Eskandarinezhad S, Khaksar S, Shafiee P, Yusuf M, Abdullah B, Salahshour P, Sadeghi F (2022) A review on recent advances in dry reforming of methane over Ni- and Co-based nanocatalysts. Int J Hydrogen Energy 47:42213–42233

    Article  CAS  Google Scholar 

  8. Xie J, Wang S, Zhao KF, Wu MM, Wang FG (2023) Regulating the Pt-MnO2 interaction and interface for room temperature formaldehyde oxidation. Inorg Chem 62:904–915

    Article  CAS  PubMed  Google Scholar 

  9. Abdulrasheed A, Jalil AA, Gambo Y, Ibrahim M, Hambali HU, Hamid MYS (2019) A review on catalyst development for dry reforming of methane to syngas: Recent advances. Renew Sust Energ Rev 108:175–193

    Article  CAS  Google Scholar 

  10. Salaev MA, Liotta LF, Vodyankina OV (2022) Lanthanoid-containing Ni-based catalysts for dry reforming of methane: A review. Int J Hydrogen Energy 47:4489–4535

    Article  Google Scholar 

  11. Zhu QY, Liu YF, Qin XD, Liu L, Ren ZH, Tao X, Wang CT, Wang H, Li L, Liu X, Chen LW, Wang L, Xiao FS (2023) Zeolite fixed cobalt-nickel nanoparticles for coking and sintering resistance in dry reforming of methane. Chem Eng Sci 280:119030

    Article  CAS  Google Scholar 

  12. Bahari MB, Phuc NHH, Alenazey F, Vu KB, Ainirazali N, Vo DVN (2017) Catalytic performance of La-Ni/Al2O3 catalyst for CO2 reforming of ethanol. Catal Today 291:67–75

    Article  CAS  Google Scholar 

  13. Fayaz F, Danh HT, Nguyen-Huy C, Vu KB, Abdullah B, Vo DVN (2016) Promotional effect of Ce-dopant on Al2O3-supported Co catalysts for syngas production via CO2 reforming of ethanol, Procedia. Engineering 148:646–653

    CAS  Google Scholar 

  14. Yentekakis IV, Panagiotopoulou P, Artemakis G (2021) A review of recent efforts to promote dry reforming of methane (DRM) to syngas production via bimetallic catalyst formulations. Appl Catal B 296:120210

    Article  CAS  Google Scholar 

  15. Das S, Lim KH, Gani TZH, Aksari S, Kawi S (2023) Bi-functional CeO2 coated NiCo-MgAl core-shell catalyst with high activity and resistance to coke and H2S poisoning in methane dry reforming. Appl Catal B 323:122141

    Article  CAS  Google Scholar 

  16. Horlyck J, Lawrey C, Lovell EC, Amal R, Scott J (2018) Elucidating the impact of Ni and Co loading on the selectivity of bimetallic NiCo catalysts for dry reforming of methane. Chem Eng J 352:572–580

    Article  CAS  Google Scholar 

  17. Ramachandran R, Lan YC, Xu ZX, Wang F (2020) Construction of NiCo-layered double hydroxide microspheres from Ni-MOFs for high-performance asymmetric supercapacitors. ACS Appl Energy Mater 3:6633–6643

    Article  CAS  Google Scholar 

  18. Guo ZY, Song LH, Xu TT, Gao DW, Li CC, Hu X, Chen GZ (2019) CeO2-CuO bimetal oxides derived from Ce-based MOF and their difference in catalytic activities for CO oxidation. Mater Chem Phys 226:338–343

    Article  CAS  Google Scholar 

  19. Wang MY, Li FF, Dong JL, Lin XT, Liu XY, Wang DZ, Cai WJ (2022) MOF-derived CoCeOx nanocomposite catalyst with enhanced anti-coking property for ethanol reforming with CO2. J Environ Chem Eng 10:107892

    Article  CAS  Google Scholar 

  20. Liang TY, Raja DS, Chin KC, Huang CL, Sethupathi SAP, Leong LJ, Tsai DH, Lu SY (2020) Bimetallic metal-organic framework-derived hybrid nanostructures as high-performance catalysts for methane dry reforming. ACS Appl Nano Mater 12:15183–15193

    Article  CAS  Google Scholar 

  21. Budi CS, Deka JR, Hsu WC, Saikia D, Chen KT, Kao HM, Yang YC (2020) Bimetallic Co/Zn zeolitic imidazolate framework ZIF-67 supported Cu nanoparticles: An excellent catalyst for reduction of synthetic dyes and nitroarenes. J Hazard Mater 407:124392–124406

    Article  PubMed  Google Scholar 

  22. Hua B, Yan N, Li M, Zhang YQ, Sun YF, Li J, Etsell T, Sarkar P, Chuang K, Luo JL (2016) Novel layered solid oxide fuel cells with multiple-twinned Ni0.8Co0.2 nanoparticles: the key to thermally independent CO2 utilization and power-chemical cogeneration. Energy Environ. Sci 9:207–215

    Article  CAS  Google Scholar 

  23. Liao X, Gerdts R, Parker SF, Chi LN, Zhao YX, Hill M, Guo JQ, Jones MO, Jiang Z (2016) An in-depth understanding of the bimetallic effects and coked carbon species on an active bimetallic Ni(Co)/Al2O3 dry reforming catalyst. Phys Chem Chem Phys 18:17311–17319

    Article  CAS  PubMed  Google Scholar 

  24. Zeng L, Cui X, Chen L, Ye T, Huang W, Ma R, Zhang X, Shi J (2017) Non-noble bimetallic alloy encased in nitrogen-doped nanotubes as a highly active and durable electrocatalyst for oxygen reduction reaction. Carbon 5:347–355

    Article  Google Scholar 

  25. Wang L, Wen B, Bai X, Liu C, Yang H (2019) NiCo alloy/carbon nanorods decorated with carbon nanotubes for microwave absorption. ACS Appl Nano Mater 2:7827–7838

    Article  CAS  Google Scholar 

  26. Li D, Zeng L, Li X, Wang X, Ma H, Assabumrungrat S, Gong J (2015) Ceria-promoted Ni/SBA-15 catalysts for ethanol steam reforming with enhanced activity and resistance to deactivation. Appl Catal B 176–177:532–541

    Article  Google Scholar 

  27. Du X, Zhang D, Shi L, Gao R, Zhang J (2012) Morphology dependence of catalytic properties of Ni/CeO2 nanostructures for carbon dioxide reforming of methane. J Phys Chem C 116:10009–10016

    Article  CAS  Google Scholar 

  28. Yl A, Wei H, Ruixuan W, Lu-Tao Weng E, Sl E, Mab E, Qw C, Klyab C (2020) Performance of an aliovalent-substituted CoCeOx catalyst from bimetallic MOF for VOC oxidation in air. Appl Catal B 275:119121

  29. Boruah BD, Misra A (2016) Effect of magnetic field on photoresponse of cobalt integrated zinc oxide nanorods. ACS Appl Nano Mater 8:4771–4780

    Article  Google Scholar 

  30. Meng C, Lin MC, Du XW, Zhou Y (2019) Molybdenum disulfide modified by laser irradiation for catalyzing hydrogen evolution. ACS Sustainable Chem Eng 7:6999–7003

    Article  CAS  Google Scholar 

  31. Zhang L, Zhang L, Xu GC, Zhang C, Li X, Sun ZP, Jia DZ (2017) Low-temperature CO oxidation over CeO2 and CeO2@Co3O4 core-shell microspheres. New J Chem 41:13418–13424

    Article  CAS  Google Scholar 

  32. Xie YJ, Guo Y, Guo YL, Wang L, Zhan WC, Wang YS, Gong XQ, Lu GZ (2016) A highly effective Ni-modified MnOx catalyst for total oxidation of propane: the promotional role of nickel oxide. RSC Adv 6:50228–50237

    Article  ADS  CAS  Google Scholar 

  33. Han XP, Ling XF, Wang Y, Ma TY, Zhong C (2019) Generation of nanoparticle, atomic-cluster, and single-atom cobalt catalysts from zeolitic imidazole frameworks by spatial isolation and their use in zinc-air batteries. Angew Chem Int Edit 58:5359–5364

    Article  CAS  Google Scholar 

  34. Zhang X, Wang J, Tan B, Zhang N, Bao J, He G (2018) Ce-Co interaction effects on the catalytic performance of uniform mesoporous CexCoy catalysts in HgO oxidation process. Fuel 226:18–26

    Article  CAS  Google Scholar 

  35. Zhao LQ, Wei QH, Zhang LL, Zhao YF, Zhang B (2021) NiCo alloy decorated on porous N-doped carbon derived from ZnCo ZIF as highly efficient and magnetically recyclable catalyst for hydrogen evolution from ammonia borane, Renew. Energ 173:273–282

    CAS  Google Scholar 

  36. Li G, Wang Q, Cao Y, Du J, He J (2012) Size and composition dependence of the frozen structures in Co-based bimetallic clusters. Phys Lett A 376:534–537

    Article  ADS  CAS  Google Scholar 

  37. He HH, Jiang CS, Wang ZY, Wang K, Sun YC, Yao MQ, Li ZH, Liu ZT (2020) Catalytic hydrodeoxygenation of biomass-derived oxygenates to bio-fuels over Co-based bimetallic catalysts. Sustain Energ Fuels 4:4558–4569

    Article  CAS  Google Scholar 

  38. Italiano C, Llorca J, Pino L, Ferraro M, Antonucci V, Vita A (2020) CO and CO2 methanation over Ni catalysts supported on CeO2, Al2O3 and Y2O3 oxides. Appl Catal B 264:118494

    Article  CAS  Google Scholar 

  39. Singha RK, Shukla A, Yadav A, Sivakumar Konathala LN, Bal R (2017) Effect of metal-support interaction on activity and stability of Ni-CeO2 catalyst for partial oxidation of methane. Appl. Catal B 202:473–488

    Article  CAS  Google Scholar 

  40. Ronda-Lloret M, Rico-Frances S, Sepulveda-Escribano A, Ramos-Fernandez EV (2018) CuOx/CeO2 catalyst derived from metal organic framework for reverse water-gas shift reaction. Appl Catal A 562:28–36

    Article  CAS  Google Scholar 

  41. Wei L, Hu X, Sun Y, Huang Y (2012) Electrospun porous ZnCo2O4 nanotubes as a high-performance anode material for lithium-ion batteries. J Mater Chem A 22:8916–8921

    Article  Google Scholar 

  42. Liu Y, Xin N, Yang QJ, Shi WD (2021) 3D CNTs/graphene network conductive substrate supported MOFs derived CoZnNiS nanosheet arrays for ultra-high volumetric/gravimetric energy density hybrid supercapacitor. J. Colloid Interf Sci 5:288–298

    Article  ADS  Google Scholar 

  43. Shan XY, Guo ZX, Zou Y, Zhao LJ (2021) Reduced graphene oxide-coated zinc-cobalt oxide nanosheet arrays with N doped carbon anchored on carbon cloths as cathode materials for high-sulfur-loading Li-S batteries. ACS Appl Nano Mater 4:11526–11536

    Article  CAS  Google Scholar 

  44. Hekmat F, Hosseini H, Shahrokhian S, Unalan HE (2020) Hybrid energy storage device from binder-free zinc-cobalt sulfide decorated biomass-derived carbon microspheres and pyrolyzed polyaniline nanotube-iron oxide. Energy Storage Mater 25:621–635

    Article  Google Scholar 

  45. Liu Y, Zhang J, Guan H, Zhao Y, Yang J, Zhang B (2018) Preparation of bimetallic Cu-Co nanocatalysts on poly (diallyldimethylammonium chloride) functionalized halloysite nanotubes for hydrolytic dehydrogenation of ammonia borane. Appl Surf Sci 427:106–113

    Article  ADS  CAS  Google Scholar 

  46. Zhang J, Wang H, Dalai A (2007) Development of stable bimetallic catalysts for carbon dioxide reforming of methane. J Catal 249:300–310

    Article  CAS  Google Scholar 

  47. Takanabe K, Nagaoka K, Nariai K, Aika K (2005) Titania-supported cobalt and nickel bimetallic catalysts for carbon dioxide reforming of methane. J Catal 232:268–275

    Article  CAS  Google Scholar 

  48. Fu F, Wang C, Qi W, Martinez-Villacorta AM, Escobar A, Chong H, Wang X, Moya S, Salmon L, Fouquet E (2018) Highly selective and sharp volcano-type synergistic Ni2Pt@ZIF-8-catalyzed hydrogen evolution from ammonia borane hydrolysis. J Am Chem Soc 140:10034–10042

    Article  CAS  PubMed  Google Scholar 

  49. Qu X, Jiang R, Li Q, Zeng F, Zheng X, Xu Z, Chen C, Peng J (2019) The hydrolysis of ammonia borane catalyzed by NiCoP/OPC-300 nanocatalysts: high selectivity and efficiency, and mechanism. Green Chem 21:850–860

    Article  CAS  Google Scholar 

  50. Guo X, Zhou R (2017) Identification of the nano/micro structure of CeO2 (rod) and the essential role of interfacial copper-ceria interaction in CuCe (rod) for selective oxidation of CO in H2-rich streams. J Power Sources 361:39–53

    Article  CAS  Google Scholar 

  51. Uzunoglu AZ, Zhang HY, Andreescu S, Stanciu LA (2015) CeO2-MOX (M: Zr, Ti, Cu) mixed metal oxides with enhanced oxygen storage capacity. J Mater Sci 50:3750–3762

    Article  ADS  CAS  Google Scholar 

  52. Xiong J, Wu Q, Mei X, Jian L, Wei Y, Zhen Z, Wu D, Li J (2018) Fabrication of spinel-type PdxCo3-xO4 binary active sites on 3D ordered meso-macroporous Ce-Zr-O2 with enhanced activity for catalytic soot oxidation. ACS Catal 8:7915–7930

    Article  CAS  Google Scholar 

  53. Leitenburg C, Trovarelli A, Kaˇspar J (1997) A temperature-programmed and transient kinetic study of CO2 activation and methanation over CeO2 supported noble metals. J Catal 166(1):98–107

    Article  Google Scholar 

  54. Dasa S, Ashoka J, Biana Z, Dewangana N, Waia MH, Dub Y, Borgnab A, Hidajata K, Kawi S (2018) Silica-ceria sandwiched Ni core-shell catalyst for low temperature dry reforming of biogas: Coke resistance and mechanistic insights. Appl Catal B 230:220–236

    Article  Google Scholar 

  55. Ramkiran A, Vo DVN, Mahmud MS (2021) Syngas production from ethanol dry reforming using Cu-based perovskite catalysts promoted with rare earth metals. Int J Hydrogen Energy 46:24845–24854

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by Natural Science Foundation of Liaoning Province (2023-MS-276).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weijie Cai.

Ethics declarations

Conflict of interests

The authors declare that there is no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, M., Li, T., Tian, Y. et al. CO2 Reforming with Ethanol Over Bimetallic Co(Ni)/ZnO Catalyst with Enhanced Activity: Synergistic Effect of Ni and Co. Catal Lett (2024). https://doi.org/10.1007/s10562-024-04607-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10562-024-04607-z

Keywords

Navigation