Skip to main content

Advertisement

Log in

A Review on Pd Based Catalysts for CO2 Hydrogenation to Methanol: In-Depth Activity and DRIFTS Mechanistic Study

  • Published:
Catalysis Surveys from Asia Aims and scope Submit manuscript

Abstract

Global warming, the environmental curse, created mainly by anthropogenic uses of fossil resources causing an excessive amount of CO2 emission in the earth’s atmosphere. Scientists are focusing to utilize CO2 to produce value added chemicals, i.e. methanol, DME, formic acid, etc. to reduce the effect of this greenhouse gas (GHG) and also provide an alternative carbon source and carbon neutral pathway for valuable chemicals. Despite significant achievements so far on the conversion of CO2 to methanol via hydrogenation over Cu–ZnO–Al2O3 catalyst, palladium and palladium based bimetallic catalysts showed a superior activity (> 10% CO2 conversion) and selectivity (~ 100%) to methanol over Cu based catalysts especially at low pressure (≤ 30 bar) and low temperature (≤ 250 °C). The alloying effect of Pd with the support ZnO, ZrO2, Ga2O3, etc. forming PdZn, PdZr2, PdGa species, which are identified as the main active phase of methanol synthesis. Also, reducible oxidic supports like CeO2, ZrO2, Ga2O3, etc. played important roles in adsorbing and activating CO2 as CO and or CO3 over the surface and hydrogenated to formate species, which has been regarded as the pivotal intermediate for methanol synthesis. Though there are challenges involving the costs of noble metal palladium, hydrogen production from renewable sources and carbon capture and storage (CSS) processes. There are several review articles on CO2 hydrogenation to methanol in the past few years but none of the existing review articles uniquely dealt with Pd-based catalysts. On this premise, this article presents a brief review comprising catalytic activity of Pd and Pd based bimetallic catalysts, effects of supports and promoters, reaction mechanism (DRIFTS studies) and perspectives on future researches necessary to achieve industrial acceptability of Pd-based catalyst for CO2 hydrogenation to methanol.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. British Petroleum (2018) Statistical review of world energy, London. https://www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/energy-economics/statistical-review/bp-stats-review-2018-full-report.pdf

  2. International Energy Agency (2018) World Energy Outlook. https://www.iea.org/weo2018

  3. Kätelhön A, Meys R, Deutz S, Suh S, Bardow A (2019) Proc Natl Acad Sci 8:201821029

    Google Scholar 

  4. Princiotta F (ed) (2011) Global climate change—the technology challenge. Springer, Amsterdam

    Google Scholar 

  5. Sanz-Perez ES, Murdock CR, Didas SA, Jones CW (2016) Chem Rev 116:11840

    CAS  PubMed  Google Scholar 

  6. Boot-Handford ME, Abanades JC, Anthony EJ, Blunt MJ, Brandani S, Mac Dowell N, Fernández JR, Ferrari MC, Gross R, Hallett JP, Haszeldine RS (2014) Energy Environ Sci 7:130

    CAS  Google Scholar 

  7. Irish JL, Sleath A, Cialone MA, Knutson TR, Jensen RE (2014) Clim Change 122:635

    Google Scholar 

  8. Olah GA, Goeppert A, Prakash GS (2011) Beyond oil and gas: the methanol economy, 2nd edn. Wiley, New York

    Google Scholar 

  9. Bill Hare HC, Blok K, Hohne N (2018) Some Progress Since Paris, but Not Enough, as Governments Amble Towards 3◦ C of Warming, Climate Action Tracker, https://climateactiontracker.org/publications/warming-projections-global-update-dec-2018

  10. Bobicki ER, Liu Q, Xu Z, Zeng H (2012) Prog Energy Combust Sci 38:302

    CAS  Google Scholar 

  11. Rahman FA, Aziz MM, Saidur R, Bakar WA, Hainin MR, Putrajaya R, Hassan NA (2017) Renew Sustain Energy Rev 71:112

    Google Scholar 

  12. Lin H, He Z, Sun Z, Kniep J, Ng A, Baker RW, Merkel TC (2015) J Membrane Sci 493:794

    CAS  Google Scholar 

  13. Jadhav SG, Vaidya PD, Bhanage BM, Joshi JB (2014) Chem Eng Res Des 92:2557

    CAS  Google Scholar 

  14. Centi G, Perathoner S (2009) Catal Today 148:191

    CAS  Google Scholar 

  15. Midilli A, Ay M, Dincer I, Rosen MA (2005) Renew Sustain Energy Rev 9:255

    CAS  Google Scholar 

  16. Olah GA (2005) Angew Chem Int Ed 44:2636

    CAS  Google Scholar 

  17. Dalena F, Senatore A, Basile M, Knani S, Basile A, Lulianelli A (2018) Membranes 8:98

    PubMed Central  Google Scholar 

  18. Parthasarathy P, Narayanan KS (2014) Renew Energy 66:570

    CAS  Google Scholar 

  19. Bičáková O, Straka P (2012) Int J Hydrogen Energy 37:11563

    Google Scholar 

  20. Gaudernack B, Lynum S (1998) Int J Hydrogen Energy 23:1087

    CAS  Google Scholar 

  21. Dincer I, Acar C (2015) Int J Hydrogen Energy 40:11094

    CAS  Google Scholar 

  22. Markit HIS (2017) 35th Annual World Methanol Conference, Berlin

  23. Ortelli EE, Wambach J, Wokaun A (2001) Appl Catal A 216:227

    CAS  Google Scholar 

  24. Pop G, Ganea R, Ivanescu D, Boeru R, Ignatescu G, Birjega R (2004) Inventors; Casale Chemicals SA, US patent US 6,710,218

  25. Palo DR, Dagle RA, Holladay JD (2007) Chem Rev 107:3992

    CAS  PubMed  Google Scholar 

  26. Ma J, Sun N, Zhang X, Zhao N, Xiao F, Wei W, Sun Y (2009) Catal Today 148:221

    CAS  Google Scholar 

  27. Shen WJ, Ichihashi Y, Ando H, Matsumura Y, Okumura M, Haruta M (2001) Appl Catal A 217:231

    CAS  Google Scholar 

  28. Álvarez A, Bansode A, Urakawa A, Bavykina AV, Wezendonk TA, Makkee M, Gascon J, Kapteijn F (2017) Chem Rev 117:9804

    PubMed  PubMed Central  Google Scholar 

  29. Porosoff MD, Yan B, Chen JG (2016) Energy Environ Sci 9:62

    CAS  Google Scholar 

  30. Liu M, Yi Y, Wang L, Guo H, Bogaerts A (2019) Catalysts 9:275

    Google Scholar 

  31. Yang H, Zhang C, Gao P, Wang H, Li X, Zhong L, Wei W, Sun Y (2017) Catal Sci Technol 7:4580

    CAS  Google Scholar 

  32. Zachopoulos A, Heracleous E (2017) J CO2 Util 21:360

    CAS  Google Scholar 

  33. Mikkelsen M, Jørgensen M, Krebs FC (2010) Energy Environ Sci 3:43

    CAS  Google Scholar 

  34. Amenomiya Y (1987) Appl Catal 30:57

    CAS  Google Scholar 

  35. Dubois JL, Sayama K, Arakawa H (1992) Chem Lett 21:5

    Google Scholar 

  36. Stangeland K, Li H, Yu Z (2018) Ind Eng Chem Res 57:4081

    CAS  Google Scholar 

  37. Jia C, Gao J, Dai Y, Zhang J, Yang Y (2016) J Energy Chem 25:1027

    Google Scholar 

  38. Shen WJ, Jun KW, Choi HS, Lee KW (2000) Korean J Chem Eng 17:210

    CAS  Google Scholar 

  39. Graaf GH, Sijtsema PJ, Stamhuis EJ, Joosten GE (1986) Chem Eng Sci 41:2883

    CAS  Google Scholar 

  40. Bussche KV, Froment GF (1996) J Catal 161:1

    Google Scholar 

  41. Coteron A, Hayhurst AN (1994) Chem Eng Sci 49:209

    CAS  Google Scholar 

  42. Agny RM, Takoudis CG (1985) Ind Eng Chem Prod Res Dev 24:50

    CAS  Google Scholar 

  43. Weigel J, Koeppel RA, Baiker A, Wokaun A (1996) Langmuir 12:5319

    CAS  Google Scholar 

  44. Chiavassa DL, Collins SE, Bonivardi AL, Baltanás MA (2009) Chem Eng J 150:204

    CAS  Google Scholar 

  45. Lee S, Sardesai A (2005) Top Catal 32:197

    CAS  Google Scholar 

  46. Baltes C, Vukojević S, Schüth F (2008) J Catal 258:334

    CAS  Google Scholar 

  47. Inui T, Hara H, Takeguchi T, Kim JB (1997) Catal Today 36:25

    CAS  Google Scholar 

  48. Rahimpour MR, Fathikalajahi J, Jahanmiri A (1998) Can J Chem Eng 76:753

    CAS  Google Scholar 

  49. Wu JG, Saito M, Takeuchi M, Watanabe T (2001) Appl Catal A 218:235

    CAS  Google Scholar 

  50. Hartadi Y, Widmann D, Behm RJ (2016) J Catal 33:238

    Google Scholar 

  51. Xiao J, Frauenheim T (2013) J Phys Chem C 117:1804

    CAS  Google Scholar 

  52. Studt F, Sharafutdinov I, Abild-Pedersen F, Elkjær CF, Hummelshøj JS, Dahl S, Chorkendorff I, Nørskov JK (2014) Nat Chem 6:320

    CAS  PubMed  Google Scholar 

  53. Sharafutdinov I, Elkjær CF, de Carvalho HW, Gardini D, Chiarello GL, Damsgaard CD, Wagner JB, Grunwaldt JD, Dahl S, Chorkendorff I (2014) J Catal 320:77

    CAS  Google Scholar 

  54. Kikuzono Y, Kagami S, Naito S, Onishi T, Tamaru K (1981) Faraday Discuss Chem Soc 72:135

    Google Scholar 

  55. Fujitani T, Saito M, Kanai Y, Watanabe T, Nakamura J, Uchijima T (1995) Appl Catal A 125:L199

    CAS  Google Scholar 

  56. Melian-Cabrera I, Granados ML, Terreros P, Fierro JLG (1998) Catal Today 45:251

    CAS  Google Scholar 

  57. Collins SE, Chiavassa DL, Bonivardi AL, Baltanás MA (2005) Catal Lett 103:83

    CAS  Google Scholar 

  58. Iwasa N, Suzuki H, Terashita M, Arai M, Takezawa N (2004) Catal Lett 96:75

    CAS  Google Scholar 

  59. Fan L, Fujimoto K (1993) Appl Catal A 106:L1

    CAS  Google Scholar 

  60. Malik AS, Zaman SF, Al-Zahrani AA, Daous MA, Driss H, Petrov LA (2018) Bulg Chem Commun 50:189

    Google Scholar 

  61. Xu J, Su X, Liu X, Pan X, Pei G, Huang Y, Wang X, Zhang T, Geng H (2016) Appl Catal A 514:51

    CAS  Google Scholar 

  62. Bahruji H, Bowker M, Hutchings G, Dimitratos N, Wells P, Gibson E, Jones W, Brookes C, Morgan D, Lalev G (2016) J Catal 343:133

    CAS  Google Scholar 

  63. Rodriguez JA (1994) J Phys Chem 98:5758

    CAS  Google Scholar 

  64. Bahruji H, Bowker M, Jones W, Hayward J, Esquius JR, Morgan DJ, Hutchings GJ (2017) Faraday Discuss 197:309

    CAS  PubMed  Google Scholar 

  65. Liao F, Wu XP, Zheng J, Li MMJ, Kroner A, Zeng Z, Hong X, Yuan Y, Gong XQ, Tsang SCE (2017) Green Chem 19:270

    CAS  Google Scholar 

  66. Malik AS, Zaman SF, Al-Zahrani AA, Daous MA, Driss H, Petrov LA (2018) Appl Catal A 560:42

    CAS  Google Scholar 

  67. Ojelade OA, Zaman SF (2019) C R Acad Bull Sci 72:732. https://doi.org/10.7546/CRABS.2019.06.05

    Article  Google Scholar 

  68. Ojelade OA, Zaman SF, Daous MA, Al-Zahrani AA, Malik AS, Driss H, Shterk G, Gascon J (2019) Appl Catal A 584:117185. https://doi.org/10.1016/j.apcata.2019.117185

    Article  CAS  Google Scholar 

  69. Malik AS, Zaman SF, Al-Zahrani AA, Daous MA, Driss H, Petrov LA (2019) Catal Today. https://doi.org/10.1016/j.cattod.2019.05.040

    Article  Google Scholar 

  70. Fan L, Fujimoto K (1994) J Catal 150:217

    CAS  Google Scholar 

  71. Díez-Ramírez J, Sánchez P, Rodríguez-Gómez A, Valverde JL, Dorado F (2016) Ind Eng Chem Res 55:3556

    Google Scholar 

  72. García-Trenco A, Regoutz A, White ER, Payne DJ, Shaffer MS, Williams CK (2018) Appl Catal B 220:9

    Google Scholar 

  73. Baiker A, Gasser D (1989) J Chem Soc Faraday Trans 1(85):999

    Google Scholar 

  74. Qin CD, Yu CC, Ng DH, Lim LC, Lai MO (1996) Matter Lett 26:17

    CAS  Google Scholar 

  75. Gao Q, Joyner RW (1999) Appl Surf Sci 375:144

    Google Scholar 

  76. Jiang X, Wang X, Nie X, Koizumi N, Guo X, Song C (2018) Catal Today 316:62

    CAS  Google Scholar 

  77. Jiang X, Nie X, Wang X, Wang H, Koizumi N, Chen Y, Guo X, Song C (2019) J Catal 369:21

    CAS  Google Scholar 

  78. Collins SE, Baltanás MA, Fierro JLG, Bonivardi AL (2002) J Catal 211:252

    CAS  Google Scholar 

  79. Fiordaliso EM, Sharafutdinov I, Carvalho HW, Grunwaldt JD, Hansen TW, Chorkendorff I, Wagner JB, Damsgaard CD (2015) ACS Catal 5:5827

    CAS  Google Scholar 

  80. Ponec V (1992) Surf Sci 272:111

    CAS  Google Scholar 

  81. de Leitenburg C, Trovarelli A, Kašpar J (1997) J Catal 166:98

    Google Scholar 

  82. Sharma S, Hilaire S, Vohs J, Gorte RJ, Jen HW (2000) J Catal 190:199

    CAS  Google Scholar 

  83. Behrens M, Zander S, Kurr P, Jacobsen N, Senker J, Koch G, Ressler T, Fischer RW, Schlögl R (2013) J Am Chem Soc 135:6061

    CAS  PubMed  Google Scholar 

  84. Koizumi N, Jiang X, Kugai J, Song C (2012) Catal Today 194:16

    CAS  Google Scholar 

  85. Zheng B, Hua W, Yue Y, Gao Z (2005) J Catal 232:143

    CAS  Google Scholar 

  86. Areán CO, Bellan AL, Mentruit MP, Delgado MR, Palomino GT (2000) Microporous Mesoporous Mater 40:35

    Google Scholar 

  87. Stepanov SI, Nikolaev VI, Bougrov VE, Romanov AE (2016) Rev Adv Mater Sci 44:63

    CAS  Google Scholar 

  88. Yamaguchi T (1994) Catal Today 20:199

    CAS  Google Scholar 

  89. Matsumura Y, Shen WJ, Ichihashi Y, Okumura M (2001) J Catal 197:267

    CAS  Google Scholar 

  90. Naito S, Aida S, Tsunematsu T, Miyao T (1998) Chem Lett 27:941

    Google Scholar 

  91. Naito S, Aida S, Miyao T (2000) Stud Surf Sci Catal 130:701

    Google Scholar 

  92. Liang XL, Dong X, Lin GD, Zhang HB (2009) Appl Catal B 88:315

    CAS  Google Scholar 

  93. Fujitani T, Nakamura I (2002) Bull Chem Soc Jpn 75:1393

    CAS  Google Scholar 

  94. Ota A, Kunkes EL, Kasatkin I, Groppo E, Ferri D, Poceiro B, Yerga RMN, Behrens M (2012) J Catal 293:27

    CAS  Google Scholar 

  95. García-Trenco A, White ER, Regoutz A, Payne DJ, Shaffer MS, Williams CK (2017) ACS Catal 7:1186

    Google Scholar 

  96. Oyola-Rivera O, Baltanás MA, Cardona-Martínez N (2015) J CO2 Util 9:8

    CAS  Google Scholar 

  97. Li L, Zhang B, Kunkes E, Föttinger K, Armbrüster M, Su DS, Wei W, Schlögl R, Behrens M (2012) ChemCatChem 4:1764

    CAS  Google Scholar 

  98. Kovnir K, Armbrüster M, Teschner D, Venkov TV, Jentoft FC, Knop-Gericke A, Grin Y, Schlögl R (2007) Sci Technol Adv Mater 8:420

    CAS  Google Scholar 

  99. Bahruji H, Esquius JR, Bowker M, Hutchings G, Armstrong RD, Jones W (2018) Top Catal 61:144

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Hu B, Yin Y, Liu G, Chen S, Hong X, Tsang SCE (2018) J Catal 359:17

    CAS  Google Scholar 

  101. Choi EJ, Lee YH, Lee DW, Moon DJ, Lee KY (2017) Mol Catal 434:146

    CAS  Google Scholar 

  102. Kugai J, Fox EB, Song C (2013) Appl Catal A 456:204

    CAS  Google Scholar 

  103. Trovarelli A (1996) Catal. Rev. 38:439

    CAS  Google Scholar 

  104. Fox EB, Velu S, Engelhard MH, Chin YH, Miller JT, Kropf J, Song C (2008) J Catal 260:358

    CAS  Google Scholar 

  105. Yin Y, Hu B, Li X, Zhou X, Hong X, Liu G (2018) Appl Catal B 234:143

    CAS  Google Scholar 

  106. Ehrlich D, Wohlrab S, Wambach J, Kuhlenbeck H, Freund HJ (1990) Vacuum 41:157

    CAS  Google Scholar 

  107. Rui N, Wang Z, Sun K, Ye J, Ge Q, Liu CJ (2017) Appl. Catal. B: Environ 218:488

    CAS  Google Scholar 

  108. Neumann M, Teschner D, Knop-Gericke A, Reschetilowski W, Armbrüster M (2016) J Catal 340:49

    CAS  Google Scholar 

  109. Tew MW, Miller JT, van Bokhoven JA (2009) J Phys Chem A 113:15140

    CAS  Google Scholar 

  110. Song YQ, Liu XR, Xiao LF, Wu W, Zhang JW, Song XM (2015) Catal Lett 145:1272

    CAS  Google Scholar 

  111. Gotti A, Prins R (1998) J Catal 175:302

    CAS  Google Scholar 

  112. Haller GL, Resasco DE (1989) Adv Catal 36:173

    CAS  Google Scholar 

  113. Tauster SJ, Fung SC, Garten RL (1978) J Am Chem Soc 100:70

    Google Scholar 

  114. Tauster SJ, Fung SC (1978) J Catal 55:29

    CAS  Google Scholar 

  115. Fan L, Fujimoto K (1997) J Catal 172:238

    CAS  Google Scholar 

  116. Zhou X, Qu J, Xu F, Hu J, Foord JS, Zeng Z, Hong X, Tsang SCE (2013) Chem Commun 49:1747

    CAS  Google Scholar 

  117. Conner WC Jr, Falconer JL (1995) Chem Rev 95:759

    CAS  Google Scholar 

  118. Qu J, Zhou X, Xu F, Gong XQ, Tsang SCE (2014) J Phy Chem 118:24452

    CAS  Google Scholar 

  119. Collins SE, Baltanas MA, Bonivardi AL (2004) J Catal 226:410

    CAS  Google Scholar 

  120. Wang W, Wang S, Ma X, Gong J (2011) Chem Soc Rev 40:3703

    CAS  PubMed  Google Scholar 

  121. Solymosi F, Erdöhelyi A, Lancz M (1985) J Catal 95:567

    CAS  Google Scholar 

  122. Erdöhelyi A, Pásztor M, Solymosi F (1986) J Catal 98:166

    Google Scholar 

  123. Chiavassa DL, Barrandeguy J, Bonivardi AL, Baltanás MA (2008) Catal Today 133:780

    Google Scholar 

  124. Collins SE, Delgado JJ, Mira C, Calvino JJ, Bernal S, Chiavassa DL, Baltanás MA, Bonivardi AL (2012) J Catal 292:90

    CAS  Google Scholar 

  125. Schild C, Wokaun A, Baiker A (1990) J Mol Catal 63:223

    CAS  Google Scholar 

  126. Arunajatesan V, Subramaniam B, Hutchenson KW, Herkes F (2007) Chem Eng Sci 62:5062

    CAS  Google Scholar 

  127. Hadjiivanov KI, Vayssilov GN (2002) Adv Catal 47:307

    CAS  Google Scholar 

  128. Lei H, Hou Z, Xie J (2016) Fuel 164:191

    CAS  Google Scholar 

  129. Dong X, Li F, Zhao N, Xiao F, Wang J, Tan Y (2016) Appl Catal B 191:8

    CAS  Google Scholar 

  130. Bavykina A, Yarulina I, Gevers L, Hedhil M, Miao X, Ramirez A, Pustovarenko O, Dikhtiarenko A, Cadiau A, Ould-Chikh S, Gascon J (2018) ChemRxiv. https://doi.org/10.26434/chemrxiv.7346693.v1

  131. Kim CH, Lee JS, Trimm DL (2004) Stud Surf Sci Catal 153:61

    CAS  Google Scholar 

  132. Jiang X, Koizumi N, Guo X, Song C (2015) Appl Catal B 170:173

    Google Scholar 

  133. Díez-Ramírez J, Díaz JA, Sánchez P, Dorado F (2017) J CO2 Util 22:71

    Google Scholar 

  134. Cabilla GC, Bonivardi AL, Baltanás MA (2001) J Catal 201:213

    CAS  Google Scholar 

Download references

Acknowledgements

Authors appreciate the support from the Chemical and Materials Engineering Department, Faculty of Engineering, King Abdulaziz University, Jeddah, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sharif F. Zaman.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ojelade, O.A., Zaman, S.F. A Review on Pd Based Catalysts for CO2 Hydrogenation to Methanol: In-Depth Activity and DRIFTS Mechanistic Study. Catal Surv Asia 24, 11–37 (2020). https://doi.org/10.1007/s10563-019-09287-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10563-019-09287-z

Keywords

Navigation