Skip to main content
Log in

Reusable and Self-Assembly Supramolecular Palladium Catalyst for C–C Coupling Reactions in Aqueous

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

A novel fluorescent supramolecular polymer (named N3T) has been synthesized resoundingly, which can effectively identify trace amounts of Pd2+ in solution, and then a self-assembled supramolecular catalyst catalyst N3T-Pd was obtained. The N3T-Pd with spherical structure could be used for C–C coupling reactions in an eco-friendly aqueous medium. The catalyst was characterized by NMR, FT-IR, XPS, SEM and fluorescence spectra. The N3T-Pd has prominent stability and recyclability without any decrease of catalytic activity after least five cycles. Notably, the reaction degree of Pd2+ with the supramolecular polymer can be conformed by the fluorescence intensity of the supramolecular polymer. With that, the N3T detection limit (LOD) of Pd2+ was measured by fluorescent titration. Surprisingly, N3T can ultrasensitive detection of Pd2+, the limit of detection was 1.9 × 10−7 M.

Graphical Abstract

The self-assembly supramolecular palladium catalyst N3T-Pd has been developed as a novel and efficient catalyst for ligand-free C–C cross-coupling reactions in aqueous at room temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 3.
Fig. 6

Similar content being viewed by others

References

  1. Cai Y, Yan X, Wang S, Zhu Z, Cen M, Ou C, Zhao Q, Yan Q, Wang J, Yao Y (2021) Inorg Chem 60:2883–2887

    Article  CAS  PubMed  Google Scholar 

  2. Wang Y, Tang R, Zhang Y, Dai Y, Zhou Q, Zhou Y, Yan C, Lu B, Wang J, Yao Y (2023) Inorg Chem 62:7605–7610

    Article  CAS  PubMed  Google Scholar 

  3. Wang C, Zhang J (2022) ACS Appl Bio Mater 5:1934–1953

    Article  CAS  PubMed  Google Scholar 

  4. Shahi S, Roghani-Mamaqani H, Talebi S, Mardani H (2022) Chem Mater 34:468–498

    Article  CAS  Google Scholar 

  5. Yao H, Niu YB, Kan XT (2022) Dyes Pigm 198:110021

    Article  CAS  Google Scholar 

  6. Cao X, Li Y, Yu Y, Fu S, Gao A, Chang X (2019) Nanoscale 11:10911

    Article  CAS  PubMed  Google Scholar 

  7. Li C, Cao S, Lutzki J, Yang J, Konegger T, Kleitz F, Thomas A (2022) J Am Chem Soc 144:3083–3090

    Article  CAS  PubMed  Google Scholar 

  8. Zeng R, Gong Z, Yan Q (2020) J Org Chem 85:8397–8404

    Article  CAS  PubMed  Google Scholar 

  9. Tan Y, Wang F, Zhang J (2018) Chem Soc Rev 47:2130–2144

    Article  CAS  PubMed  Google Scholar 

  10. Carné-Sánchez A, Craig GA, Larpent P, Hirose T, Higuchi M, Kitagawa S, Matsuda K, Urayama K, Furukawa S (2018) Nat Commun 9:2506–2513

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  11. Holey S, Sekhar K, Swain D, Bojja S, Nayak Y (2022) ACS Biomater Sci Eng 8:1103–1114

    Article  CAS  PubMed  Google Scholar 

  12. Hartlieb M, Mansfield EDH, Perrier S (2020) Polym Chem 11:1083–1110

    Article  CAS  Google Scholar 

  13. Sheng F, Zhang X, Wang G (2017) J Mater Chem B 5:53–61

    Article  CAS  PubMed  Google Scholar 

  14. Jiang PW, Wu S, Hu Q, Yan XT, Liu JT, Fu SS, Wu L, Zhao X, Yang QL (2022) Dyes Pigm 206:110657

    Article  CAS  Google Scholar 

  15. Satake A (2020) ChemPlusChem 85:1542–1548

    Article  CAS  PubMed  Google Scholar 

  16. Xu X, Guyse JFRV, Jerca VV, Hoogenboom R (2020) Rapid Commun Mass Spectrom 41:1900305–1900310

    CAS  Google Scholar 

  17. Jiang P, Wu S, Liu J, Fu S, HuQ YX, Su Q, Wang Y, Wang X, Yang Q (2022) Opt Mater 129:112468

    Article  CAS  Google Scholar 

  18. Xie J, Liang YR (2021) Chin J Chem 39:710–728

    Article  CAS  Google Scholar 

  19. Kaur H, Kumar M, Bhalla V (2020) Green Chem 22:8036–8045

    Article  CAS  Google Scholar 

  20. Li Y, Feng X, Li Z (2019) Catal Sci Technol 9:377–383

    Article  CAS  Google Scholar 

  21. Li CC, Qin Q, Guan A, Yang W, Zhao WX (2023) J Org Chem 88:7525–7534

    Article  CAS  PubMed  Google Scholar 

  22. Liu G, Han F, Liu C, Wu H, Zeng Y, Zhu R, Yu X, Rao S, Huang G, Wang J (2019) Organometallics 38:1459–1467

    Article  CAS  Google Scholar 

  23. Oger N, Felpin F (2016) ChemCatChem 8:1998–2009

    Article  CAS  Google Scholar 

  24. Goel R, Luxami V, Paul K (2016) RSC Adv 6:37664–37671

    Article  ADS  CAS  Google Scholar 

  25. Akkarasamiyo S, Ruchirawat S, Ploypradith P, Samec SM (2020) Synthesis 52:645–659

    Article  CAS  Google Scholar 

  26. Key RJ, Tengco JMM, Smith MD, Vannucci AK (2019) Organometallics 38:2007–2014

    Article  CAS  Google Scholar 

  27. Devendar P, Qu R, Kang W, He B, Yang G (2018) J Agr Food Chem 66:8914–8934

    Article  CAS  Google Scholar 

  28. Fuente-Olvera AAD, Suárez-Castillo OR, Mendoza-Espinosa D (2019) Eur J Inorg Chem 46:4879–4886

    Article  Google Scholar 

  29. Li X, Zhao Q, Feng X, Pan L, Wu Z, Wu X, Ma T, Liu J, Pan Y, Song Y, Wu M (2019) Chemsuschem 12:858–865

    Article  CAS  PubMed  Google Scholar 

  30. Kameo H, Yamamoto J, Asada A, Nakazawa H, Matsuzaka H, Bourissou D (2019) Angew Chem Int Ed 58:18783–18787

    Article  CAS  Google Scholar 

  31. Qiu L, McCaffrey R, Zhang W (2018) Chem-Asian J 13:362–372

    Article  CAS  PubMed  Google Scholar 

  32. Altan O (2022) Appl Organomet Chem 36:e6690

    Article  CAS  Google Scholar 

  33. Lu S, Hu Y, Wan S, McCaffrey R, Jin Y, Gu H, Zhang W (2017) J Am Chem Soc 139:17082–17088

    Article  CAS  PubMed  Google Scholar 

  34. Zhang JH, Hu WD, Qian BB, Li HQ, Sudduth B, Engelhard M, Zhang L, Hu JZ, Sun J, Zhang CB, He H, Wang Y (2023) Nat Commun 14:3944

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zhang M, Wang L, Yan HJ, Lian LZ, Si JX, Long ZQ, Cui XX, Wang JD, Zhao L, Yang C, Wu RL, Ma L (2021) J Mater Res Technol 13:2055–2065

    Article  CAS  Google Scholar 

  36. Pradip P, Sharath K, David D, Rahul B (2014) Chem Comm 50:3169–3172

    Article  Google Scholar 

  37. Ye R, Liu W, Han H, Somorjai GA (2018) ChemCatChem 10:1666–1685

    Article  CAS  Google Scholar 

  38. Schreyer H, Eckert R, Immohr S, Bellis JD, Felderhoff M, Schüth F (2019) Angew Chem Int Ed 58:11262–11265

    Article  CAS  Google Scholar 

  39. Căta L, Terenti N, Cociug C, Hădade ND, Grosu I, Bucur C, Cojocaru B, Parvulescu VI, Mazur M, Čejka J (2022) ACS Appl Mater Interfaces 14:10428–10437

    Article  PubMed  Google Scholar 

  40. Wu S, Ding N, Jiang PW, Wu L, Feng QL, Zhao LB, Wang YB, Su Q, Zhang H, Yang QL (2020) Tetrahedron Lett 61:152656

    Article  CAS  Google Scholar 

  41. Wu S, Zhang Y, Jiang HY, Wu L, Ding N, Jiang PW, Zhang H, Zhao LB, Yin FP, Yang QL (2020) Tetrahedron 76:131664

    Article  CAS  Google Scholar 

  42. Ding N, Wu S, Hu Q, Liu JT, Zhang PH, Fu SS, Zhao HL, Zhang H, Yin FP, Yang QL (2023) Appl Clay Sci 231:106754

    Article  CAS  Google Scholar 

  43. Hu Q, Wu S, Zhang PH, Fu SS, Wang JJ, Liu CY, Zhang H, Sun YZ, Yang QL (2023) React Kinet Mech Catal 10:230677

    Google Scholar 

  44. Zhang H, Hu Q, Liu JT, Zhang PH, Fu SS, Wu S (2022) ACS Appl Nano Mater 5:16987–16995

    Article  CAS  Google Scholar 

  45. Yang QL, Zhang Y, Ding N, Hu Q, Yan XT, Liu JT, Zhang PH, Fu SS, Wang QS, Wu L, Wu S (2022) Appl Organomet Chem 36:e6775

    Article  CAS  Google Scholar 

  46. Yin Z, Hu J, Fu Q, Gui K, Yao Y (2019) Soft Matter 15:4187–4191

    Article  ADS  CAS  PubMed  Google Scholar 

  47. Hu J, Yin Z, Gui K, Fu Q, Yao Y, Fu X, Liu H (2020) Soft Matter 16:1029–1033

    Article  ADS  CAS  PubMed  Google Scholar 

  48. Martínez-Klimov ME, Hernandez-Hipólito P, Klimova TE, Solís-Casados DA, Martínez-García M (2016) J Catal 342:138–150

    Article  Google Scholar 

  49. Kaur N, Kaur G, Bhalla A, Dhau JS, Chaudhary GR (2018) Green Chem 20:1506–1514

    Article  CAS  Google Scholar 

  50. Si W, Zhou J, Zhang S, Li S, Xing W, Zhuo S (2013) Electrochim Acta 107:397–405

    Article  CAS  Google Scholar 

  51. Sahu S, Sinha N, Bhutia SK, Majhi M, Mohapatra S (2014) J Mater Chem B 2:3799–3808

    Article  CAS  PubMed  Google Scholar 

  52. Muratsugu S, Maity N, Baba H, Tasaki M, Tada M (2017) Dalton Trans 46:3125–3134

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 21962017), the Natural Science Foundation of Gansu Province (No. 22JR5RA215). We also thank Key laboratory for Utility of Environmental Friendly Composite Materials and Biomass in University of Gansu Province (Northwest Minzu University), for financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shang Wu or Quanlu Yang.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 1713 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Y., Fu, S., Zhang, Y. et al. Reusable and Self-Assembly Supramolecular Palladium Catalyst for C–C Coupling Reactions in Aqueous. Catal Lett (2024). https://doi.org/10.1007/s10562-024-04603-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10562-024-04603-3

Keywords

Navigation