Skip to main content

Advertisement

Log in

Modulation of Alkaline Phosphatase Based ELISA in the Presence of Ions and Citrate Stabilized Nanoparticles

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Alkaline phosphatase (ALP) is extensively used in various diagnostic assays including ELISA. Diagnostic methods/biosensors having a high limit of detection are often modified by the incorporation of nanoparticles. Nanoparticles are also known to enhance enzymatic activity. The aim of this study was to determine the effect of ions and nanoparticles of gold and silver on the catalysis of ALP and hence on the detection potential of ELISA. The nanoparticles were synthesized using citrate as a stabilizing and reducing agent. Both nanoparticles and ions bound ALP conjugated to goat anti-rabbit IgG as shown by UV–visible and fluorescence spectroscopic analysis. Maximum detection signal was achieved when ELISA was conducted in the presence of a combination of 0.8 µg/ml cit-AuNPs and 700 nM AgCl. The increase was by 2.65 and 3.67 folds when the combination was introduced at the substrate step and at the secondary antibody step, respectively. Molecular docking revealed that citrate binds to specific residues close to the substrate binding site leading to catalytically favoured structural changes in the conformation of ALP. The study provides a promising approach to modulate enzyme-associated diagnostic and therapeutic processes using ions and nanoparticles.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Gan SD, Patel KR (2013) Enzyme immunoassay and enzyme-linked immunosorbent assay. J Invest Dermatol 133:1–3. https://doi.org/10.1038/jid.2013.287

    Article  CAS  Google Scholar 

  2. Shah K, Maghsoudlou P (2016) Enzyme-linked immunosorbent assay (ELISA): the basics. Br J Hosp Med 77:C98–C101

    Article  Google Scholar 

  3. Ciaurriz P, Fernández F, Tellechea E et al (2017) Comparison of four functionalization methods of gold nanoparticles for enhancing the enzyme-linked immunosorbent assay (ELISA). Beilstein J Nanotechnol 8:244–253. https://doi.org/10.3762/bjnano.8.27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Billingsley MM, Riley RS, Day ES (2017) Antibody-nanoparticle conjugates to enhance the sensitivity of ELISA-based detection methods. PLoS ONE 12:1–15. https://doi.org/10.1371/journal.pone.0177592

    Article  CAS  Google Scholar 

  5. Kozlenkov A, Manes T, Hoylaerts MF, Millán JL (2002) Function assignment to conserved residues in mammalian alkaline phosphatases. J Biol Chem 277:22992–22999. https://doi.org/10.1074/jbc.M202298200

    Article  CAS  PubMed  Google Scholar 

  6. Kantrowitz ER (2004) E. coli alkaline phosphatase. Encycl Inorg Bioinorg Chem. https://doi.org/10.1002/9781119951438.eibc0479

    Article  Google Scholar 

  7. Millán JL (2006) Alkaline phosphatases. Purinergic Signal 2:335–341. https://doi.org/10.1007/s11302-005-5435-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Epstein E, Kiechle FL, Artiss JD, Zak B (1986) The clinical use of alkaline phosphatase enzymes. Clin Lab Med 6:491–505. https://doi.org/10.1016/S0272-2712(18)30795-9

    Article  CAS  PubMed  Google Scholar 

  9. Lowe D, Sanvictores T, Zubair M et al (2023) Alkaline phosphatase. StatPearls Publishing, Treasure Island

    Google Scholar 

  10. Liu L, Chang Y, Lou J et al (2023) Overview on the development of alkaline-phosphatase-linked optical immunoassays. Molecules 28:6565. https://doi.org/10.3390/molecules28186565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zherdev AV, Dzantiev BB (2022) Detection limits of immunoanalytical systems: limiting factors and methods of reduction. J Anal Chem 77:391–401. https://doi.org/10.1134/S1061934822040141

    Article  CAS  Google Scholar 

  12. Zhao Q, Lu D, Zhang G et al (2021) Recent improvements in enzyme-linked immunosorbent assays based on nanomaterials. Talanta 223:121722. https://doi.org/10.1016/j.talanta.2020.121722

    Article  CAS  PubMed  Google Scholar 

  13. Gil Rosa B, Akingbade OE, Guo X et al (2022) Multiplexed immunosensors for point-of-care diagnostic applications. Biosens Bioelectron 203:114050. https://doi.org/10.1016/j.bios.2022.114050

    Article  CAS  PubMed  Google Scholar 

  14. Jain KK (2007) Applications of nanobiotechnology in clinical diagnostics. Clin Chem 53:2002–2009. https://doi.org/10.1373/clinchem.2007.090795

    Article  CAS  PubMed  Google Scholar 

  15. He W, Wamer W, Xia Q et al (2014) Enzyme-like activity of nanomaterials. J Environ Sci Heal Part C Environ Carcinog Ecotoxicol Rev 32:186–211. https://doi.org/10.1080/10590501.2014.907462

    Article  CAS  Google Scholar 

  16. Huang Y, Ren J, Qu X (2019) Nanozymes: classification, catalytic mechanisms, activity regulation, and applications. Chem Rev 119:4357–4412. https://doi.org/10.1021/acs.chemrev.8b00672

    Article  CAS  PubMed  Google Scholar 

  17. Mohamad A, Teo H, Keasberry NA, Ahmed MU (2019) Recent developments in colorimetric immunoassays using nanozymes and plasmonic nanoparticles. Crit Rev Biotechnol 39:50–66. https://doi.org/10.1080/07388551.2018.1496063

    Article  CAS  PubMed  Google Scholar 

  18. Gao Y, Zhou Y, Chandrawati R (2020) Metal and metal oxide nanoparticles to enhance the performance of enzyme-linked immunosorbent assay (ELISA). ACS Appl Nano Mater 3:1–21. https://doi.org/10.1021/acsanm.9b02003

    Article  CAS  Google Scholar 

  19. Singh S (2019) Nanomaterials exhibiting enzyme-like properties (Nanozymes): current advances and future perspectives. Front Chem 7:1–10. https://doi.org/10.3389/fchem.2019.00046

    Article  ADS  CAS  Google Scholar 

  20. Pandey P, Singh SP, Arya SK et al (2007) Application of thiolated gold nanoparticles for the enhancement of glucose oxidase activity. Langmuir 23:3333–3337. https://doi.org/10.1021/la062901c

    Article  CAS  PubMed  Google Scholar 

  21. Arsalan A, Younus H (2018) Enzymes and nanoparticles: modulation of enzymatic activity via nanoparticles. Int J Biol Macromol 118:1833–1847. https://doi.org/10.1016/j.ijbiomac.2018.07.030

    Article  CAS  PubMed  Google Scholar 

  22. Deka J, Paul A, Chattopadhyay A (2012) Modulating enzymatic activity in the presence of gold nanoparticles. RSC Adv 2:4736–4745. https://doi.org/10.1039/c2ra20056b

    Article  ADS  CAS  Google Scholar 

  23. Saware K, Aurade RM, Kamala Jayanthi PD, Abbaraju V (2015) Modulatory effect of citrate reduced gold and biosynthesized silver nanoparticles on α-amylase activity. J Nanopart 2015:1–9. https://doi.org/10.1155/2015/829718

    Article  CAS  Google Scholar 

  24. Dutta N, Mukhopadhyay A, Dasgupta AK, Chakrabarti K (2013) Nanotechnology enabled enhancement of enzyme activity and thermostability: study on impaired pectate lyase from attenuated macrophomina phaseolina in presence of hydroxyapatite nanoparticle. PLoS ONE 8:1–11. https://doi.org/10.1371/journal.pone.0063567

    Article  CAS  Google Scholar 

  25. Arsalan A, Hashmi MA, Zofair SFF et al (2021) Activation of yeast alcohol dehydrogenase in the presence of citrate stabilized gold nanoparticles: an insight into its interaction and modulation mechanism. J Mol Liq 330:115633. https://doi.org/10.1016/j.molliq.2021.115633

    Article  CAS  Google Scholar 

  26. Zofair SFF, Arsalan A, Alam M et al (2020) Immobilization of laccase on sepharose-linked antibody support for decolourization of phenol red. Int J Biol Macromol 161:78–87. https://doi.org/10.1016/j.ijbiomac.2020.06.009

    Article  CAS  PubMed  Google Scholar 

  27. Fishman JB, Berg EA (2019) Protein A and protein G purification of antibodies. Cold Spring Harb Protoc 2019:82–84. https://doi.org/10.1101/pdb.prot099143

    Article  Google Scholar 

  28. Amendola V, Meneghetti M (2009) Size evaluation of gold nanoparticles by UV–vis spectroscopy. J Phys Chem C 113:4277–4285. https://doi.org/10.1021/jp8082425

    Article  CAS  Google Scholar 

  29. Rashid MU, Bhuiyan MKH, Quayum ME (2013) Synthesis of silver nano particles (Ag-NPs) and their uses for quantitative analysis of vitamin C tablets. Dhaka Univ J Pharm Sci 12:29–33. https://doi.org/10.3329/dujps.v12i1.16297

    Article  Google Scholar 

  30. Li WR, Xie XB, Shi QS et al (2010) Antibacterial activity and mechanism of silver nanoparticles on Escherichia coli. Appl Microbiol Biotechnol 85:1115–1122. https://doi.org/10.1007/s00253-009-2159-5

    Article  CAS  PubMed  Google Scholar 

  31. Aswathy B, Avadhani GS, Sumithra IS et al (2011) Microwave assisted synthesis and UV–Vis spectroscopic studies of silver nanoparticles synthesized using vanillin as a reducing agent. J Mol Liq 159:165–169. https://doi.org/10.1016/j.molliq.2011.01.001

    Article  CAS  Google Scholar 

  32. Arsalan A, Alam MF, Farheen Zofair SF et al (2020) Immobilization of β-galactosidase on tannic acid stabilized silver nanoparticles: a safer way towards its industrial application. Spectrochim Acta Part A Mol Biomol Spectrosc 226:117637. https://doi.org/10.1016/j.saa.2019.117637

    Article  CAS  Google Scholar 

  33. Shakir M, Nasir Z, Khan MS et al (2015) Study on immobilization of yeast alcohol dehydrogenase on nanocrystalline Ni–Co ferrites as magnetic support. Int J Biol Macromol 72:1196–1204. https://doi.org/10.1016/j.ijbiomac.2014.10.045

    Article  CAS  PubMed  Google Scholar 

  34. Kabeer H, Hanif S, Arsalan A et al (2020) Structural-dependent N, O-donor imine-appended Cu(II)/Zn(II) complexes: synthesis, spectral, and in vitro pharmacological assessment. ACS Omega 5:1229–1245. https://doi.org/10.1021/acsomega.9b03762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Rangnekar A, Sarma TK, Singh AK et al (2007) Retention of enzymatic activity of α-amylase in the reductive synthesis of gold nanoparticles. Langmuir 23:5700–5706. https://doi.org/10.1021/la062749e

    Article  CAS  PubMed  Google Scholar 

  36. Younus H, Arsalan A, Alam MF (2020) Arsenic inhibits human salivary aldehyde dehydrogenase: mechanism and a population-based study. Chemosphere 243:125358. https://doi.org/10.1016/j.chemosphere.2019.125358

    Article  CAS  PubMed  Google Scholar 

  37. Neyestani TR, Djalali M, Pezeshki M (2003) Isolation of α-lactalbumin, β-lactoglobulin, and bovine serum albumin from cow’s milk using gel filtration and anion-exchange chromatography including evaluation of their antigenicity. Protein Expr Purif 29:202–208. https://doi.org/10.1016/S1046-5928(03)00015-9

    Article  CAS  PubMed  Google Scholar 

  38. Islam S, Mir AR, Abidi M et al (2018) Methylglyoxal modified IgG generates autoimmune response in rheumatoid arthritis. Int J Biol Macromol 118:15–23. https://doi.org/10.1016/j.ijbiomac.2018.06.040

    Article  CAS  PubMed  Google Scholar 

  39. Trott O, Olson AJ (2009) AutoDock vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem. https://doi.org/10.1002/jcc.21334

    Article  Google Scholar 

  40. Vajragupta O, Boonchoong P, Morris GM, Olson AJ (2005) Active site binding modes of curcumin in HIV-1 protease and integrase. Bioorg Med Chem Lett 15:3364–3368. https://doi.org/10.1016/j.bmcl.2005.05.032

    Article  CAS  PubMed  Google Scholar 

  41. Hanwell MD, Curtis DE, Lonie DC et al (2012) Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. J Cheminform 4:1–7. https://doi.org/10.1016/j.aim.2014.05.019

    Article  Google Scholar 

  42. Ojea-Jiménez I, Campanera JM (2012) Molecular modeling of the reduction mechanism in the citrate-mediated synthesis of gold nanoparticles. J Phys Chem C 116:23682–23691. https://doi.org/10.1021/jp305830p

    Article  CAS  Google Scholar 

  43. Rahman A, Kumar S, Bafana A et al (2018) Biosynthetic conversion of Ag+ to highly Stable Ag0 nanoparticles by wild type and cell wall deficient strains of Chlamydomonas reinhardtii. Molecules 24:98. https://doi.org/10.3390/molecules24010098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wu CS, Lee CC, Wu CT et al (2011) Size-modulated catalytic activity of enzyme-nanoparticle conjugates: a combined kinetic and theoretical study. Chem Commun 47:7446–7448. https://doi.org/10.1039/c1cc11020a

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Research facilities provided by University Sophisticated Instrumentation facility (USIF) and Interdisciplinary Biotechnology Unit (faculty of life sciences) of Aligarh Muslim University are gratefully acknowledged. A.A. and S.F.F.Z. acknowledge Senior Research Fellowship from Indian Council of Medical Research, Govt. of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hina Younus.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arsalan, A., Zofair, S.F.F., Khan, M.A. et al. Modulation of Alkaline Phosphatase Based ELISA in the Presence of Ions and Citrate Stabilized Nanoparticles. Catal Lett (2024). https://doi.org/10.1007/s10562-024-04599-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10562-024-04599-w

Keywords

Navigation