Skip to main content
Log in

Activity Improvement of Mn/Al2O3 for NH3-SCR Reaction via the Rare-Earth (Ce, La, Nd and Y) Oxides Modification

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

A series of rare-earth (Ce, La, Nd, and Y) oxides doped Mn/Al2O3 catalysts were prepared by the impregnation method and used for the selective catalytic reduction (SCR) of NOx with NH3. The additions of rare-earth oxides greatly enhance the SCR catalytic activity of Mn/Al2O3, and the highest activity was obtained over CeMn/Al2O3 with a NOx conversion higher than 85% at 125–300 °C. The results of characterization show that the rare-earth oxides additives except for Y2O3 promote the surface distribution of Mn element and enhance the ratio of chemisorbed oxygen and Mn4+ on the surface of Mn/Al2O3. Moreover, with the introduction of rare-earth oxides, the reducibility of MnO2 species is improved and a larger amount of the weak acid sites are obtained. The increase in the ratio of Mn4+ and the enhancement in the reducibility of MnO2 are the main reasons for the elevation in SCR activity of the rare-earth oxides modified Mn/Al2O3 catalysts. This study sheds light on the promotional effect of rare-earth oxides over the Mn-based catalysts for SCR reaction.

Graphical Abstract

Rare-earth oxides greatly enhance the SCR catalytic activity of Mn/Al2O3, and the highest activity was obtained over CeMn/Al2O3 with a NOx conversion higher than 85% at 125–300 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Richter A, Burrows JP, Nüß H, Granier C, Niemeie U (2005) Increase in tropospheric nitrogen dioxide over China observed from space. Nature 437:129–132

    Article  CAS  PubMed  Google Scholar 

  2. Ângelo J, Andrade L, Madeira LM, Mendes A (2013) An overview of photocatalysis phenomena applied to NOx abatement. J Environ Manage 129:522–539

    Article  PubMed  Google Scholar 

  3. Han LP, Cai SX, Gao M, Hasegawa JY, Wang PL, Zhang JP, Shi LY, Zhang DS (2019) Selective catalytic reduction of NOx with NH3 by using novel catalysts: state of the art and future prospects. Chem Rev 119:10916–10976

    Article  CAS  PubMed  Google Scholar 

  4. Damma D, Ettireddy PR, Reddy BM, Smirniotis PG (2019) A review of low temperature NH3-SCR for removal of NOx. Catalysts 9(4):349–383

    Article  CAS  Google Scholar 

  5. Shi ZW, Peng QG, E JQ, Xie B, Wei J, Yin RX, Fu G (2023) Mechanism, performance and modification methods for NH3-SCR catalysts: a review. Fuel 331:125885

    Article  CAS  Google Scholar 

  6. Xu GY, Guo XL, Cheng XX, Yu J, Fang BZ (2021) A review of Mn-based catalysts for low-temperature NH3-SCR: NOx removal and H2O/SO2 resistance. Nanoscale 13:7052–7080

    Article  CAS  PubMed  Google Scholar 

  7. Liu C, Shi JW, Gao C, Niu CM (2016) Manganese oxide-based catalysts for low-temperature selective catalytic reduction of NOx with NH3: a review. Appl Catal A Gen 522:54–69

    Article  CAS  Google Scholar 

  8. Sun P, Guo RT, Liu SM, Wang SX, Pan WG, Li MY (2017) The enhanced performance of MnOx catalyst for NH3-SCR reaction by the modification with Eu. Appl Catal A Gen 531:129–138

    Article  CAS  Google Scholar 

  9. Meng DM, Zhan WC, Guo Y, Guo YL, Wang L, Lu GZ (2015) A highly effective catalyst of Sm-MnOx for the NH3-SCR of NOx at low temperature: promotional role of Sm and its catalytic performance. ACS Catal 5:5973–5983

    Article  CAS  Google Scholar 

  10. Wu XD, Si ZC, Li G, Weng D, Ma ZR (2011) Effects of cerium and vanadium on the activity and selectivity of MnOx-TiO2 catalyst for low-temperature NH3-SCR. J Rare Earths 29(1):64–68

    Article  CAS  Google Scholar 

  11. Gao FY, Tang XL, Yi HH, Li JY, Zhao SZ, Wang JG, Chu C, Li CL (2017) Promotional mechanisms of activity and SO2 tolerance of Co- or Ni-doped MnOx-CeO2 catalysts for SCR of NOx with NH3 at low temperature. Chem Eng J 317:20–31

    Article  CAS  Google Scholar 

  12. Yao XJ, Ma KL, Zou WX, He SG, An JB, Yang FM, Dong L (2017) Influence of preparation methods on the physicochemical properties and catalytic performance of MnOx-CeO2 catalysts for NH3-SCR at low temperature. Chin J Catal 38:146–159

    Article  CAS  Google Scholar 

  13. Ye B, Kim J, Lee MJ, Chun SY, Jeong B, Kim T, Lee DH, Kim HD (2021) Mn-Ce oxide nanoparticles supported on nitrogen-doped reduced graphene oxide as low-temperature catalysts for selective catalytic reduction of nitrogen oxides. Micropor Mesopor Mat 310:110588

    Article  CAS  Google Scholar 

  14. Jin RB, Liu Y, Wu ZB, Wang HQ, Gu TT (2010) Low-temperature selective catalytic reduction of NO with NH3 over Mn-Ce oxides supported on TiO2 and Al2O3: a comparative study. Chemosphere 78(9):1160–1166

    Article  CAS  PubMed  Google Scholar 

  15. Chen C, Xie HD, He PW, Liu X, Yang C, Wang N, Ge CM (2022) Comparison of low-temperature catalytic activity and H2O/SO2 resistance of the Ce-Mn/TiO2 NH3-SCR catalysts prepared by the reverse co-precipitation, co-precipitation and impregnation method. Appl Surf Sci 571:151285

    Article  CAS  Google Scholar 

  16. Xie HD, He PW, Chen C, Yang C, Chai SN, Wang N, Ge CM (2022) Enhanced water and sulfur resistance by Sm3+ modification of Ce-Mn/TiO2 for NH3-SCR. Catal Lett 153:850–862

    Article  Google Scholar 

  17. Zhang XP, Li ZF, Zhao JJ, Cui YZ, Tan BJ, Wang JX, Zhang CX, He GH (2017) Mechanism of Ce promoting SO2 resistance of MnOx/γ-Al2O3: an experimental and DFT study. Korean J Chem Eng 34:2065–2071

    Article  CAS  Google Scholar 

  18. Wang XB, Wu SG, Zou WX, Yu SH, Gui KT, Dong L (2016) Fe-Mn/Al2O3 catalysts for low temperature selective catalytic reduction of NO with NH3. Chin J Catal 37(8):1314–1323

    Article  CAS  Google Scholar 

  19. Chen L, Yang J, Ren S, Chen ZC, Zhou YH, Liu WZ (2021) Effects of Sm modification on biochar supported Mn oxide catalysts for low-temperature NH3-SCR of NO. J Energy Inst 98:234–243

    Article  CAS  Google Scholar 

  20. Jiang LJ, Liang Y, Liu WZ, Wu HL, Aldahri T, Carrero DS, Liu QC (2021) Synergistic effect and mechanism of FeOx and CeOx co-doping on the superior catalytic performance and SO2 tolerance of Mn-Fe-Ce/ACN catalyst in low-temperature NH3-SCR of NOx. J Environ Chem Eng 9(6):106360

    Article  CAS  Google Scholar 

  21. Jankowska A, Kowalczyk A, Rutkowska M, Michalik M, Chmielarz L (2022) Catalytic performance of bimetallic systems (Cu-Fe, Cu-Mn, Fe-Mn) based on spherical MCM-41 modified by template ion-exchange in NH3-SCR process. Catalysts 12(8):885–904

    Article  CAS  Google Scholar 

  22. Świrk Da Costa K, Delahay G, Zaki A, Adil K, Cadiau A (2022) Facile modifications of HKUST-1 by V, Nb and Mn for low-temperature selective catalytic reduction of nitrogen oxides by NH3. Catal Today 384–386:25–32

    Article  Google Scholar 

  23. Li X, Li Q, Zhong L, Song ZJ, Yu SH, Zhang C, Fang QY, Chen G (2019) DFT analysis of the reaction mechanism for NH3-SCR of NOx over Mn/γ-Al2O3 catalyst. J Phys Chem C 123(41):25185–25196

    Article  CAS  Google Scholar 

  24. Xu Q, Li ZY, Wang L, Zhan WC, Guo YL, Guo Y (2022) Understanding the role of redox properties and NO adsorption over MnFeOx for NH3-SCR. Catal Sci Technol 12:2030–2041

    Article  Google Scholar 

  25. Wei Y, Liang PY, Li YH, Zhao YP, Min XB, Tao P, Hu JL, Sun TJ (2022) Modification of Mn-Fe mixed oxide catalysts for low-temperature NH3-SCR of NO from marine diesel exhausts. J Environ Chem Eng 10(3):107772

    Article  CAS  Google Scholar 

  26. Zhu YJ, Xiao XX, Wang JT, Ma C, Jia XF, Qiao WM, Ling LC (2021) Enhanced activity and water resistance of hierarchical flower-like Mn-Co binary oxides for ammonia-SCR reaction at low temperature. Appl Surf Sci 569:150989

    Article  CAS  Google Scholar 

  27. Li HX, Jin LY, Zhang AC, Sun ZJ, Zhang XM, Zhu QF, Yang CZ, Zhang SB (2022) Investigation of Co-doped Mn oxide catalyst for NH3-SCR activity and SO2/H2O resistance. J Fuel Chem Technol 50(11):1404–1416

    Article  CAS  Google Scholar 

  28. Kang H, Wang JJ, Zheng J, Chu W, Tang CJ, Ji JW, Ren R, Wu MX, Jing FL (2021) Solvent-free elaboration of Ni-doped MnOx catalysts with high performance for NH3-SCR in low and medium temperature zones. Mol Catal 501:111376

    Article  CAS  Google Scholar 

  29. Liu FD, Shan WP, Lian ZH, Xie LJ, Yang WW, He H (2013) Novel MnWOx catalyst with remarkable performance for low temperature NH3-SCR of NOx. Catal Sci Technol 3:2699–2707

    Article  CAS  Google Scholar 

  30. Huang J, Huang H, Jiang HT, Liu LC (2019) The promotional role of Nd on Mn/TiO2 catalyst for the low-temperature NH3-SCR of NOx. Catal Today 332:49–58

    Article  CAS  Google Scholar 

  31. Gao FY, Tang XL, Yi HH, Zhao SZ, Wang JG, Gu T (2019) Improvement of activity, selectivity and H2O & SO2-tolerance of micromesoporous CrMn2O4 spinel catalyst for low-temperature NH3-SCR of NOx. Appl Surf Sci 466:411–424

    Article  CAS  Google Scholar 

  32. Gao FY, Tang XL, Yi HH, Zhao SZ, Wang JG, Shi YR, Meng XM (2018) Novel Co- or Ni-Mn binary oxide catalysts with hydroxyl groups for NH3-SCR of NOx at low temperature. Appl Surf Sci 443:103–113

    Article  CAS  Google Scholar 

  33. Xue HY, Guo XM, Mao DS, Meng T, Yu J, Ma Z (2023) Unveiling the temperature-dependent effect of Zn on phosphotungstic acid-modified MnOx catalyst for selective catalytic reduction of NOx: a poison at <180 °C or a promoter at >180 °C. Chem Eng J 470:144170

    Article  CAS  Google Scholar 

  34. Pekridis G, Athanasiou C, Konsolakis M, Yentekakis IV, Marnellos GE (2009) N2O abatement over γ-Al2O3 supported catalysts: effect of reducing agent and active phase nature. Top Catal 52:1880–1887

    Article  CAS  Google Scholar 

  35. Jin RB, Liu Y, Wang Y, Cen WL, Wu ZB, Wang HQ, Weng XL (2014) The role of cerium in the improved SO2 tolerance for NO reduction with NH3 over Mn-Ce/TiO2 catalyst at low temperature. Appl Catal B Environ 148–149:582–588

    Article  Google Scholar 

  36. Wu ZB, Jin RB, Wang HQ, Liu Y (2009) Effect of ceria doping on SO2 resistance of Mn/TiO2 for selective catalytic reduction of NO with NH3 at low temperature. Catal Commun 10:935–939

    Article  CAS  Google Scholar 

  37. Chen L, Ren S, Liu WZ, Yang J, Chen ZC, Wang MM, Liu QC (2021) Low-temperature NH3-SCR activity of M (M = Zr, Ni and Co) doped MnOx supported biochar catalysts. J Environ Chem Eng 9(6):106504

    Article  CAS  Google Scholar 

  38. Ettireddy PR, Ettireddy N, Mamedov S, Boolchand P, Smirniotis PG (2007) Surface characterization studies of TiO2 supported manganese oxide catalysts for low temperature SCR of NO with NH3. Appl Catal B Environ 76(1–2):123–134

    Article  CAS  Google Scholar 

  39. Xue HY, Guo XM, Mao DS, Meng T, Yu J, Ma Z (2022) Phosphotungstic acid-modified MnOx for selective catalytic reduction of NOx with NH3. Catalysts 12(10):1248–1267

    Article  CAS  Google Scholar 

  40. Boningari T, Ettireddy PR, Somogyvari A, Liu Y, Vorontsov A, McDonald CA, Smirniotis PG (2015) Influence of elevated surface texture hydrated titania on Ce-doped Mn/TiO2 catalysts for the low-temperature SCR of NOx under oxygen-rich conditions. J Catal 325:145–155

    Article  CAS  Google Scholar 

  41. Krcha MD, Janik MJ (2013) Examination of oxygen vacancy formation in Mn-doped CeO2 (111) using DFT+U and the hybrid functional HSE06. Langmuir 29(32):10120–10131

    Article  CAS  PubMed  Google Scholar 

  42. Xue HY, Guo XM, Meng T, Guo QS, Mao DS, Wang S (2021) Cu-ZSM-5 catalyst impregnated with Mn-Co oxide for the selected catalytic reduction of NO: physicochemical property-catalytic activity relationship and in situ DRIFTS study for the reaction mechanism. ACS Catal 11(13):7702–7718

    Article  CAS  Google Scholar 

  43. Wang SH, Li XD, Ren S, Xing XD, Chen L, Yang J, Liu MY, Xie YX (2022) Effects of different exposed crystal surfaces of CeO2 loaded on an MnO2/X catalyst for the NH3-SCR reaction. CrystEngComm 24:4991–5002

    Article  CAS  Google Scholar 

  44. Raja S, Alphin MS, Sivachandiran L, Singh P, Damma D, Smirniotis PG (2022) TiO2-carbon nanotubes composite supported MnOx-CuO catalyst for low-temperature NH3-SCR of NO: investigation of SO2 and H2O tolerance. Fuel 307:121886

    Article  CAS  Google Scholar 

  45. Li N, Ren CH, Hou LM, Jiao KL, Wu WF (2022) Study on NH3-SCR performance and mechanism of Mn supported SO42−-CeCO3F-CePO4 catalysts. Mol Catal 533:112763–112775

    Article  CAS  Google Scholar 

  46. Ding SY, Li CY, Zhang J, Wu JZ, Yue Y, Qian GR (2022) Doping regulation increased SCR activity, selectivity, and hydrothermal stability of Mn-based cordierite catalyst. Appl Surf Sci 595:153484

    Article  CAS  Google Scholar 

  47. Wang MM, Ren S, Jiang YH, Su BX, Chen ZC, Liu WZ, Yang J, Chen L (2022) Insights into co-doping effect of Sm and Fe on anti-Pb poisoning of Mn-Ce/AC catalyst for low-temperature SCR of NO with NH3. Fuel 319:123763

    Article  CAS  Google Scholar 

  48. Liu SM, Guo RT, Sun P, Hu CX, Wang SX, Pan WG, Li MY, Liu SW, Sun X, Liu J (2017) Mechanistic investigation of the different poisoning mechanisms of Cl and P on Mn/TiO2 catalyst for selective catalytic reduction of NOx with NH3. J Taiwan Inst Chem Eng 80:314–325

    Article  CAS  Google Scholar 

  49. Xie H, Shu DB, Chen TH, Liu HB, Zou XH, Wang C, Han ZY, Chen D (2022) An in-situ DRIFTs study of Mn doped FeVO4 catalyst by one-pot synthesis for low-temperature NH3-SCR. Fuel 309:122108

    Article  CAS  Google Scholar 

  50. Cai WJ, de la Piscina PR, Toyir J, Homs N (2015) CO2 hydrogenation to methanol over CuZnGa catalysts prepared using microwave-assisted methods. Catal Today 242:193–199

    Article  CAS  Google Scholar 

  51. Hua YX, Guo XM, Mao DS, Lu GZ, Rempel GL, Ng FTT (2017) Single-step synthesis of dimethyl ether from biomass-derived syngas over CuO-ZnO-MOx (M = Zr, Al, Cr, Ti)/HZSM-5 hybrid catalyst: effects of MOx. Appl Catal A Gen 540:68–74

    Article  CAS  Google Scholar 

  52. Thirupathi B, Smirniotis PG (2011) Effect of nickel as dopant in Mn/TiO2 catalysts for the low-temperature selective reduction of NO with NH3. Catal Lett 141:1399–1404

    Article  CAS  Google Scholar 

  53. Thirupathi B, Smirniotis PG (2011) Co-doping a metal (Cr, Fe Co, Ni, Cu, Zn, Ce, and Zr) on Mn/TiO2 catalyst and its effect on the selective reduction of NO with NH3 at low-temperatures. Appl Catal B Environ 110:195–206

    Article  CAS  Google Scholar 

  54. Thirupathi B, Smirniotis PG (2012) Nickel-doped Mn/TiO2 as an efficient catalyst for the low-temperature SCR of NO with NH3: catalytic evaluation and characterizations. J Catal 288:74–83

    Article  CAS  Google Scholar 

  55. Boningari T, Pappas DK, Ettireddy PR, Kotrba A, Smirniotis PG (2015) Influence of SiO2 on M/TiO2 (M = Cu, Mn, and Ce) formulations for low-temperature selective catalytic reduction of NOx with NH3: surface properties and key components in relation with activity of NOx reduction. Ind Eng Chem Res 54(8):2261–2273

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Shanghai Promotion Association of Tech-Transfer (No. LM201848) and Shanghai institute of Technology (No. XTCX2023-04) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaoming Guo or Lupeng Han.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Teng, Y., Guo, X., Xue, H. et al. Activity Improvement of Mn/Al2O3 for NH3-SCR Reaction via the Rare-Earth (Ce, La, Nd and Y) Oxides Modification. Catal Lett 154, 3645–3653 (2024). https://doi.org/10.1007/s10562-024-04588-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-024-04588-z

Keywords

Navigation