Skip to main content
Log in

Highly Effective Zirconia/γ-Alumina for Continuous Vapor Phase N-methylation of Aniline

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

High-surface-area ZrO2/γ-Al2O3 catalysts were used for the selective N-methylation of aniline with methanol at mild temperature and atmospheric pressure conditions. The activity and stability of these catalysts were maintained throughout the process without significant changes in conversion and selectivity of the target products. These γ-Al2O3-supported ZrO2 catalysts were synthesized by a facile wet impregnation method, and their zirconia loadings varied from 10 to 50%. In order to enhance the catalytic activity, changes were implemented on the zirconia loadings under varying reaction parameters. N-methyl aniline can be produced preferentially at 270 °C with a catalyst composed of 20 wt % ZrO2/γ-Al2O3. This catalyst was able to acquire a higher aniline conversion during methylation because of its enough surface area and the presence of weak and moderate Lewis acidic sites in its γ-Al2O3 and ZrO2 components. The catalytic activity and product distribution were also assessed by adjusting a variety of reaction parameters, like temperature, ratios, and catalyst loadings, respectively. The structural and textural properties of synthesized catalysts are thoroughly characterized using a number of different analytical techniques. Thus, the current protocol can be considered as a simpler, reproducible, and environmentally benign approach for N-methylation of amines.

Graphical Abstract

Zirconia/γ-alumina for N-methylation of aniline in vapor-phase continuous mode

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 2
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Kim JS, Shon OJ, Rim JA, Ki SK, Yoon J (2002) J Org Chem 67:2348–2351

    Article  CAS  PubMed  Google Scholar 

  2. Sunwanprasop S, Nhujak T, Roengsumran S, Petsom A (2004) Ind Eng Chem Res 43:4973–4978

    Article  Google Scholar 

  3. Lawrence SA (2004) Amines: synthesis, properties and applications. Cambridge University Press, Cambridge

    Google Scholar 

  4. Van der Vlugt JI (2010) Chem Soc Rev 39:2302–2322

    Article  PubMed  Google Scholar 

  5. Salvatore RN, Yoon CH, Jung KW (2001) Tetrahedron 57:7785–7811

    Article  CAS  Google Scholar 

  6. Basak A, Nayak MK, Chakraborti AK (1998) Tetrahedron Lett 39:4883–4886

    Article  CAS  Google Scholar 

  7. Zhang M, Wu S, Bian L, Cao Q, Fang W (2019) Catal Sci Technol 9:286–301

    Article  CAS  Google Scholar 

  8. Cabrero-Antonino JR, Adam R, Warna J, Murzin DY, Beller M (2018) Chem Eng J 351:1129–1136

    Article  CAS  Google Scholar 

  9. Zhang M, Xu Y, Williams BL, Xiao M, Wang S, Han D, Sun L, Meng Y (2021) J Cleaner Prod 279:123344

    Article  CAS  Google Scholar 

  10. Seo H, Bedard AC, Chen WP, Hicklin RW, Alabugin A, Jamison TF (2018) Tetrahedron 74:3124–3128

    Article  CAS  Google Scholar 

  11. Watanabe Y, Tsuji Y, Ohsugi Y (1981) Tetrahedron Lett 22:2667–2670

    Article  CAS  Google Scholar 

  12. Grigg R, Mitchell TRB, Sutthivaiyakit S, Tongpenyai N (1981). J Chem Soc Chem Commun. https://doi.org/10.1039/c39810000611

    Article  Google Scholar 

  13. Naskar S, Bhattacharjee M (2007) Tetrahedron Lett 48:3367–3370

    Article  CAS  Google Scholar 

  14. Long Y, He J, Zhang H, Chen Y, Liu K, Fu J, Li H, Zhu L, Lin Z, Stefancu A, Cortes E, Zhu M, Liu M (2023) Chem Eur J 29:e202203152

    Article  CAS  PubMed  Google Scholar 

  15. Cho JH, Ha Y, Cho A, Park J, Choi J, Won Y, Kim H, Kim BM (2022) Catal Sci Technol 12:3524–3533

    Article  CAS  Google Scholar 

  16. González-Lainez M, Jiménez MV, Azpiroz R, Passarelli V, Modrego FJ, Pérez-Torrente JJ (2022) Organometallics 41:1364–1380

    Article  Google Scholar 

  17. Jiang L, Guo F, Wang Y, Jiang J, Duan Y, Hou Z (2019) Asian J Org Chem 8:2046–2049

    Article  CAS  Google Scholar 

  18. Chen J, Wu J, Tu T (2017) ACS Sustain Chem Eng 5:11744–11751

    Article  CAS  Google Scholar 

  19. Piehl P, Amuso R, Spannenberg A, Gabriele B, Neumann H, Beller M (2021) Catal Sci Technol 22:2512–2517

    Article  Google Scholar 

  20. Shinohara K, Tsurugi H, Mashima K (2022) ACS Catal 12:8220–8228

    Article  CAS  Google Scholar 

  21. Voisine AB, Wang D, Dorcet V, Roisnel T, Darcel C, Sortais JB (2017) J Catal 347:57–62

    Article  Google Scholar 

  22. Pham TV, Trang HTT (2023) ACS Omega 8:17005–17016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Dau PV, Cohen SM (2013) Chem Commun 49:6128–6130

    Article  CAS  Google Scholar 

  24. Dhakshinamoorthy A, Alvaro M, Garcia H (2010) Appl Catal A 378:19–25

    Article  CAS  Google Scholar 

  25. Anand R, Khaire SS, Maheswari R, Gore KU, Chumbhale VR (2003) Appl Catal A 242:171–177

    Article  CAS  Google Scholar 

  26. Ivanova II, Pomakhina EB, Rebrov AI, Hunger M, Kolyagin YG, Weitkamp J (2001) J Catal 203:375–381

    Article  CAS  Google Scholar 

  27. Narayanan S, Sultana A (1998) Appl Catal A 167:103–111

    Article  CAS  Google Scholar 

  28. Yadav GD, Doshi NS (2003) J Mol Catal A 194:195–209

    Article  CAS  Google Scholar 

  29. Narayanan S, Deshpande K (1996) Appl Catal A 135:125–135

    Article  CAS  Google Scholar 

  30. Sreekumar K, Sugunan S (2002) Appl Catal A 230:245–251

    Article  CAS  Google Scholar 

  31. Narayanan S, Deshpande K (1995) J Mol Catal A 104:L109–L113

    Article  Google Scholar 

  32. Narayanan S, Prasad BP (1995) J Mol Catal A 96:57–64

    Article  CAS  Google Scholar 

  33. Nishamol K, Rahna KS, Sugunan S (2004) J Mol Catal A 209:89–96

    Article  CAS  Google Scholar 

  34. Sreekumar K, Mathew T, Mirajkar SP, Sugunan S, Rao BS (2000) Appl Catal A 201:L1–L8

    Article  CAS  Google Scholar 

  35. Rosler S, Ertl M, Irrgang T, Kempe R (2015) Angew Chem Int Ed 54:15046–15050

    Article  Google Scholar 

  36. Zhang G, Yin Z, Zheng S (2016) Org Lett 18:300–303

    Article  CAS  PubMed  Google Scholar 

  37. Shimizu KI, Imaiida N, Kon K, Hakim Siddiki SMA, Satsuma A (2013) ACS Catal 3:998–1005

    Article  CAS  Google Scholar 

  38. Pan HJ, Ng TW, Zhao Y (2015) Chem Commun 51:11907–11910

    Article  CAS  Google Scholar 

  39. Yan T, Feringa BL, Barta K (2016) ACS Catal 6:381–388

    Article  CAS  Google Scholar 

  40. Luque R, Campelo JM, Luna D, Marinas JM, Romero AA (2007) J Mol Catal A Chem 269:190–196

    Article  CAS  Google Scholar 

  41. Vijayaraj M, Gopinath CS (2007) Appl Catal A Gen 320:64–68

    Article  CAS  Google Scholar 

  42. Sharma A, Verma K, Kaushal S, Rahul B (2021) ACS Omega 6:15300–15307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Liu K, Zhao Z, Lin W, Liu Q, Wu Q, Shi R, Zhang C, Cheng H, Arai M, Zhao F (2019) ChemCat Chem 11:3919–3926

    Article  CAS  Google Scholar 

  44. Yan L, Liu XX, Fu XY (2016) RSC Adv 6:109702–109705

    Article  CAS  Google Scholar 

  45. Nallagangula M, Sujatha C, Bhat VT, Namitharan K (2019) Chem Commun 55:8490–8493

    Article  CAS  Google Scholar 

  46. Wang LM, Morioka Y, Jenkinson K, Wheatley AEH, Saito S, Naka H (2018) Sci Rep 8:6931

    Article  PubMed  PubMed Central  Google Scholar 

  47. Luo N, Zhong Y, Wen H, Luo R (2020) ACS Omega 5:27723–27732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Naaser AYA, Abdullah AAK, Mabrook SA, Tahani Saad A, Abdel-Basit AO (2023) Molecules 28:7192

    Article  Google Scholar 

  49. Ming Z, Xiaoyu Z, Yaming Z, Ding L, Zhe Z, Qing W, Kai T, Lina N, Fu W (2023) Nanomaterials 13:678

    Article  Google Scholar 

  50. Reddy PS, Sudarsanam P, Raju G, Reddy BM (2010) Catal Commun 11:1224–1228

    Article  CAS  Google Scholar 

  51. Reddy PS, Sudarsanam P, Mallesham B, Raju G, Reddy BM (2011) J Ind Eng Chem 17:377–381

    Article  CAS  Google Scholar 

  52. Bautista FM, Campelo JM, Garcia A, Luna D, Marinas JM, Romero AA, Urbano MR (1997) J Catal 172:103–109

    Article  CAS  Google Scholar 

  53. Nayebzadeh H, Saghatoleslami N, Tabasizadeh M (2019) J Nanostruct Chem 9:141–152

    Article  CAS  Google Scholar 

  54. Vijayaraj M, Gopinath CS (2004) J Catal 226:230–234

    Article  CAS  Google Scholar 

  55. Vijayaraj M, Murugan B, Umbarkar SB, Hegde SG, Gopinath CS (2005) J Mol Catal A 231:169–180

    Article  CAS  Google Scholar 

  56. Nehate M, Vijay V (2009) Appl Clay Sci 44:255–258

    Article  CAS  Google Scholar 

  57. Zhu H, Dong X, Shi L, Sun Q (2010) J Nat Gas Chem 19:67–70

    Article  CAS  Google Scholar 

  58. Takebayashi Y, Morita Y, Sakai H, Abe M, Yoda S, Furuya T, Sugeta T, Otake K (2005) Chem Commun 31:3965–3967

    Article  Google Scholar 

  59. An-Nan K, Ching-Liang Y, Wei-de Z, Hung-en L (1996) Appl Catal A 134:53–66

    Article  Google Scholar 

  60. Xia W, Wang F, Wang L (2020) Catal Lett 150:150–158

    Article  CAS  Google Scholar 

  61. Maleki F, Pacchioni G (2020) Top Catal 63:1717–1730

    Article  CAS  Google Scholar 

  62. Sobczyka DP, Hesena JJG, van Grondellea J, Schuringa D, de Jongb AM, van Santen RA (2004) Catal Lett 94:1–2

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Universiti Malaysia Pahang Al-Sultan Abdullah.

Funding

This study is supported by the UMPSA, MALAYSIA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Venkata Rao Madduluri.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 49 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Madduluri, V.R., Rahim, M.H.A. Highly Effective Zirconia/γ-Alumina for Continuous Vapor Phase N-methylation of Aniline. Catal Lett 154, 3457–3471 (2024). https://doi.org/10.1007/s10562-023-04568-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-023-04568-9

Keywords

Navigation