Skip to main content
Log in

(3-Aminopropyl)trimethoxysilane-Assisted Co-assembly to Monolithic Pd@SiO2/Al2O3/Al Catalysts for Low Concentration CH4 Combustion: Effect of Preparation Conditions

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Herein, an affordable strategy was developed to form Pd@SiO2 nanostructure assembled onto monolithic AlOOH/Al nanoarrays from nano- to macro-scale by a one-step reaction process. (3-Aminopropyl)trimethoxysilane (APTMS) was employed as a dual-role reagent for the bidirectional bridging between Pd2+ and AlOOH/Al, as well as the formation of SiO2 matrix and mesopores. The effects of one-step organization conditions on the preparation process, catalyst structure, and catalytic performance were all studied. High hydroxyl contents in Al-based nanoarrays promoted the silanization reaction of APTMS deposition, resulting in a well-formed SiO2 shell and abundant mesopores during the thermal decomposition of APTMS. APTMS amount was not only related to SiO2 loading and encapsulation effect of the core–shell structure, but also affected Pd accessibility. Such proposed APTMS-assisted protocol for the in-situ organization of monolithic Pd@SiO2 catalysts can effectively prevent the growth and aggregation of Pd NPs, thereby favoring low-temperature activity and stability for CH4 combustion.

Graphical Abstract

Monolithic Pd@SiO2 catalysts supported on AlOOH/Al nanoarrays were successfully fabricated from nano- to macro-scale in one step for improved thermal stability of CH4 combustion. The cost-effective coupling agent (APTMS) acted as the bidirectional bridging between –NH2 of APTMS and Pd2+ through preferential chelation, as well as a silanization reaction between methoxy groups of APTMS and surface –OH groups on AlOOH nanoarrays to form Al–O–Si bonds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Bunting RJ, Cheng X, Thompson J, Hu P (2019) Amorphous surface PdOX and its activity toward methane combustion. ACS Catal 9:10317–10323

    Article  CAS  Google Scholar 

  2. Dai Y, Kumar VP, Zhu C, Wang H, Smith KJ, Wolf MO, MacLachlan MJ (2019) Bowtie-shaped NiCo2O4 catalysts for low-temperature methane combustion. Adv Funct Mater 29:1807519

    Article  Google Scholar 

  3. Farrauto RJ (2012) Low-temperature oxidation of methane. Science 337:659–660

    Article  CAS  PubMed  Google Scholar 

  4. Cargnello M, Delgado Jaen JJ, Hernandez Garrido JC, Bakhmutsky K, Montini T, Calvino Gamez JJ, Gorte RJ, Fornasiero P (2012) Exceptional activity for methane combustion over modular Pd@CeO2 subunits on functionalized Al2O3. Science 337:713–717

    Article  CAS  PubMed  Google Scholar 

  5. Zhao G, Pan X, Zhang Z, Liu Y, Lu Y (2020) A thin-felt Pd–MgO–Al2O3/Al-fiber catalyst for catalytic combustion of methane with resistance to water-vapor poisoning. J Catal 384:122–135

    Article  CAS  Google Scholar 

  6. Liu J, Zhao G, Si J, Sun W, Liu Y, Lu Y (2021) Binder-free dip-coating of Mn2O3-Na2WO4-TiO2 catalyst onto monolithic SiC-foam towards efficient oxidative coupling of methane. Fuel 305:125193

    Article  Google Scholar 

  7. Gao Y, Wei Y, Sun W, Zhao G, Liu Y, Lu Y (2022) Insight into deactivation of the carbon-/sintering-resistant Ni@Silicalite-1 for catalytic partial oxidation of methane to syngas. Fuel 320:123892

    Article  CAS  Google Scholar 

  8. Bao Z, Zhou H, Song X, Gao Y, Zhuang G, Deng S, Wei Z, Zhong X, Wang J (2019) Enhanced oxygen reduction activity on carbon supported Pd nanoparticles via SiO2. ChemCatChem 11:1278–1285

    Article  CAS  Google Scholar 

  9. Zhao G, Liu J, Si J, Ni J, Sun W, Liu Y, Lu Y (2022) Self-structured monolithic TiO2-Mn2O3-Na2WO4-foam catalyst towards efficient oxidative coupling of methane. Fuel 327:125193

    Article  CAS  Google Scholar 

  10. Murata K, Kosuge D, Ohyama J, Mahara Y, Yamamoto Y, Arai S, Satsuma A (2019) Exploiting metal-support interactions to tune the redox properties of supported Pd catalysts for methane combustion. ACS Catal 10:1381–1387

    Article  Google Scholar 

  11. Kim HJ, Lee JH, Lee MW, Seo Y, Choung JW, Kim CH, Lee K-Y (2020) SiO2@Pd@CeO2 catalyst with improved thermal stability: effect of interaction between Pd and CeO2 on activity for CO oxidation. Mol Catal 492:111014

    Article  CAS  Google Scholar 

  12. Geng H, Zhao H, Yu S, Li D, Lei H, Zhang Y (2023) High performance of conversion and selectivity of methane to CO via Pt-Pd core-shell structural catalyst. Appl Catal B Environ 324:122189

    Article  CAS  Google Scholar 

  13. Hill AJ, Seo CY, Chen X, Bhat A, Fisher GB, Lenert A, Schwank JW (2019) Thermally induced restructuring of Pd@ CeO2 and Pd@ SiO2 nanoparticles as a strategy for enhancing low-temperature catalytic activity. ACS Catal 10:1731–1741

    Article  Google Scholar 

  14. Kim S, Lee S, Jung W (2019) Sintering resistance of Pt@ SiO2 core-shell catalyst. ChemCatChem 11:4653–4659

    Article  CAS  Google Scholar 

  15. Chen C, Yeh Y-H, Cargnello M, Murray CB, Fornasiero P, Gorte RJ (2014) Methane oxidation on Pd@ZrO2/Si–Al2O3 is enhanced by surface reduction of ZrO2. ACS Catal 4:3902–3909

    Article  CAS  Google Scholar 

  16. Du J, Zhao D, Wang C, Zhao Y, Li H, Luo Y (2020) Size effects of Pd nanoparticles supported over CeZrPAl for methane oxidation. Catal Sci Technol 10:7875–7882

    Article  CAS  Google Scholar 

  17. Bastakoti BP, Li Y, Miyamoto N, Sanchez-Ballester NM, Abe H, Ye J, Srinivasu P, Yamauchi Y (2014) Polymeric micelle assembly for the direct synthesis of functionalized mesoporous silica with fully accessible Pt nanoparticles toward an improved CO oxidation reaction. Chem Commun 50:9101–9104

    Article  CAS  Google Scholar 

  18. Wang C, Han L, Zhang Q, Li Y, Zhao G, Liu Y, Lu Y (2015) Endogenous growth of 2D AlOOH nanosheets on a 3D Al-fiber network via steam-only oxidation in application for forming structured catalysts. Green Chem 17:3762–3765

    Article  CAS  Google Scholar 

  19. Wang S, Zhao G, Liu Y, Lu Y (2019) Microfibrous-structured Pd/AlOOH/Al-fiber with hydroxyl-enriched surfaces for the catalytic semihydrogenation of acetylene. Ind Eng Chem Res 58:16431–16441

    Article  CAS  Google Scholar 

  20. Wang Y, Huang B, Xu J, Li N, Qu Z (2021) Hydroxyl groups promoted Ag dispersion and excellent performance of Ag/Al2O3 catalyst for HCHO oxidation. Catal Lett 151:2376–2383

    Article  CAS  Google Scholar 

  21. Wang Z, Han M, Zhang J, He F, Peng S, Li Y (2020) Investigating and significantly improving the stability of tannic acid (TA)-aminopropyltriethoxysilane (APTES) coating for enhanced oil-water separation. J Membr Sci 593:117383

    Article  Google Scholar 

  22. Aziz T, Ullah A, Fan H, Jamil MI, Khan FU, Ullah R, Iqbal M, Ali A, Ullah B (2021) Recent progress in silane coupling agent with its emerging applications. J Polym Environ 29:3427–3443

    Article  CAS  Google Scholar 

  23. Ahmed N, Fan H, Dubois P, Zhang X, Fahad S, Aziz T, Wan J (2019) Nano-engineering and micromolecular science of polysilsesquioxane materials and their emerging applications. J Mater Chem A 7(38):21577–21604

    Article  CAS  Google Scholar 

  24. Cui F, Cui T (2014) Self-catalytic synthesis of metal oxide nanoclusters@mesoporous silica composites based on successive spontaneous reactions at near neutral conditions. Chem Commun 50:14801–14804

    Article  CAS  Google Scholar 

  25. Zhang Q, Li J, Chen S, Zhu C, Li Y, Zhao G (2022) Co-assembly of microfibrous-structured Ag@SiO2-Co3O4/Al-fiber catalysts assisted with water-soluble silane coupling agent for catalytic combustion of trace ethylene. Catal Today 405–406:159–167

    Article  Google Scholar 

  26. Strange NA, Adak S, Stroupe Z, Crain CA, Novak EC, Daemen LL, Larese JZ (2022) A multi-faceted structural, thermodynamic, and spectroscopic approach for investigating ethanol dehydration over transition phase aluminas. Phys Chem Chem Phys 25:590–603

    Article  PubMed  Google Scholar 

  27. Mohamed MM, Bayoumy WA, El-Faramawy H, El-Dogdog W, Mohamed AA (2020) A novel α-Fe2O3/AlOOH(γ-Al2O3) nanocatalyst for efficient biodiesel production from waste oil: kinetic and thermal studies. Renew Energ 160:450–464

    Article  CAS  Google Scholar 

  28. Gómez M, Pizarro J, Castillo X, Díaz C, Ghisolfi A, De Lourdes CM, Cazorla-Amorós D, Arenas-Alatorre J (2021) Preparation of mesoporous γ-Al2O3 with high surface area from an AlOOH extract of recycling biomass ash. J Environ Chem Eng 9:105925

    Article  Google Scholar 

  29. Maleky S, Asadipour A, Nasiri A, Luque R, Faraji M (2022) Tetracycline adsorption from aqueous media by magnetically separable Fe3O4@Methylcellulose/APTMS: isotherm, kinetic and thermodynamic studies. J Polym Environ 30:3351–3367

    Article  CAS  Google Scholar 

  30. Baccarella AM, Garrard R, Beauvais ML, Bednarksi U, Fischer S, Abeykoon AM, Chapman KW, Phillips BL, Parise JB, Simonson JW (2021) Cluster mediated conversion of amorphous Al(OH)3 to γ-AlOOH. J Solid State Chem 301:122340

    Article  CAS  Google Scholar 

  31. Sun X, Wei W (2010) Electrostatic-assembly-driven formation of micrometer-scale supramolecular sheets of (3-aminopropyl)triethoxysilane(APTES)-HAuCl4 and their subsequent transformation into stable APTES bilayer-capped gold nanoparticles through a thermal process. Langmuir 26:6133–6135

    Article  CAS  PubMed  Google Scholar 

  32. Zhang Q, Zhao G, Zhang Z, Han L, Fan S, Chai R, Li Y, Liu Y, Huang J, Lu Y (2016) From nano- to macro-engineering of oxide-encapsulated-nanoparticles for harsh reactions: one-step organization via cross-linking molecules. Chem Commun 52:11927–11930

    Article  CAS  Google Scholar 

  33. Lee J, Jeon H, Oh DG, Szanyi J, Kwak JH (2015) Morphology-dependent phase transformation of γ-Al2O3. Appl Catal A-Gen 500:58–68

    Article  CAS  Google Scholar 

  34. Yang K, Ge Z, Zhang M, Wang C, Peng K, Yang H, You Y (2022) Deep eutectic solvent based adhesive with dynamic adhesion, water-resistant and NIR-responsive retrieval properties. Chem Eng J 439:135646

    Article  CAS  Google Scholar 

  35. Lyu J, Xu K, Zhang N, Lu C, Zhang Q, Yu L, Feng F, Li X (2019) In situ incorporation of diamino silane group into waterborne polyurethane for enhancing surface hydrophobicity of coating. Molecules 24:1777

    Article  Google Scholar 

  36. Ahsan S, Ayub A, Meeroff D, Jahandar Lashaki M (2022) A comprehensive comparison of zeolite-5A molecular sieves and amine-grafted SBA-15 silica for cyclic adsorption-desorption of carbon dioxide in enclosed environments. Chem Eng J 437:135139

    Article  CAS  Google Scholar 

  37. Dong Y, Zhang L (2018) Constructed 3D hierarchical porous wool-ball-like NiO-loaded AlOOH electrode materials for the determination of toxic metal ions. Electrochim Acta 271:27–34

    Article  CAS  Google Scholar 

  38. Li Z, Li H, Yuan D, Leng L, Zhang M, Di M, Horton JH, Wang J, Sun L, Sun W (2022) Photoinduction of palladium single atoms supported on defect-containing γ-AlOOH nanoleaf for efficient trans-stilbene epoxidation. Chem Eng J 429:132149

    Article  CAS  Google Scholar 

  39. Minh HN, Chinh NT, Van Thanh TT, Hoang T (2019) Ternary nanocomposites based on epoxy, modified silica, and tetrabutyl titanate: morphology, characteristics, and kinetics of the curing process. J Appl Polym Sci 136:47412

    Article  Google Scholar 

  40. Simunin MM, Voronin AS, Fadeev YV, Mikhlin YL, Lizunov DA, Samoilo AS, Chirkov DY, Voronina SY, Khartov SV (2021) Features of functionalization of the surface of alumina nanofibers by hydrolysis of organosilanes on surface hydroxyl groups. Polymers 13:4374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Rios P, Fouilloux H, Vidossich P, Diez J, Lledos A, Conejero S (2018) Isolation of a cationic platinum(II) sigma-silane complex. Angew Chem Int Ed 57:3217–3221

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (nos. 21707028 and 21902100), the Doctor Programs Foundation of Henan University of Technology (no. 2019BS059), and the Cultivation Programme for Young Backbone Teachers in Henan University of Technology.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Pengwei Wang or Jianfei Gao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2602 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Q., Liu, M., Liu, Z. et al. (3-Aminopropyl)trimethoxysilane-Assisted Co-assembly to Monolithic Pd@SiO2/Al2O3/Al Catalysts for Low Concentration CH4 Combustion: Effect of Preparation Conditions. Catal Lett 154, 3388–3401 (2024). https://doi.org/10.1007/s10562-023-04485-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-023-04485-x

Keywords

Navigation