Skip to main content
Log in

A Reasonable Design of MnCo2S4 and Activated Carbon Composite as Cathode Catalyst to Improve the Power Output of Microbial Fuel Cells

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The output power and combination property of microbial fuel cells (MFCs) are often limited by the sluggish kinetics of the cathodic oxygen reduction reaction (ORR). Therefore, seek noble metal-free materials with good ORR catalytic efficiency and durability is of great significance for practical MFC application. In this paper, ternary transition metal sulfide was successfully loaded on activated carbon by hydrothermal method. In the MnCo2S4@AC nanocomposite, the synergistic effect existing between MnCo2S4 and activated carbon (AC) gives the advantages of large specific surface area, special microstructure, fast electron transmission rate and good electro-catalytic activity of MnCo2S4 for ORR. The electrochemical tests showed that the ORR event of MnCo2S4@AC was the four-electron (4e) pathway. Therefore, the highest output power density of MFC assembled with MnCo2S4@AC was 239.41 mW m−2, 3.59-fold stronger than AC (66.66 mW m−2). This method can provide the ideas for the synthesis of efficient ORR catalyst.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Kumar S, Kumar V, Kumar R et al (2019) Microbial fuel cells as a sustainable platform technology for bioenergy, biosensing, environmental monitoring, and other low power device applications. Fuel 255:115682. https://doi.org/10.1016/j.fuel.2019.115682

    Article  CAS  Google Scholar 

  2. Li H, Shi H, Dai Y et al (2022) A co-doped oxygen reduction catalyst with FeCu promotes the stability of microbial fuel cells. J Colloid Interface Sci 628:652–662. https://doi.org/10.1016/j.jcis.2022.07.068

    Article  CAS  PubMed  Google Scholar 

  3. Ding F, Liu H, Jiang X, Jiang Y, Cheng J, Tu Y, Xiao W, Li C, Yan X (2023) Bimetallic zeolite imidazolium framework derived multiphase Co/HNC as pH-universal catalysts with efficient oxygen reduction performance for microbial fuel cells. Electrochim Acta 438:141548. https://doi.org/10.1016/j.electacta.2022.141548

    Article  CAS  Google Scholar 

  4. Tu Y, Li C, Shi Y, Jiang Y, Xiao W, Zhu S, Lv P, Yan X (2023) Low-temperature molten salt synthesis and catalytic mechanism of CoS2/NC as an advanced bifunctional electrocatalyst. Dalton Trans 52:10885–10894. https://doi.org/10.1039/D3DT01694C

    Article  CAS  PubMed  Google Scholar 

  5. Yang W, Wang X, Rossi R et al (2020) Low-cost Fe–N–C catalyst derived from Fe (III)-chitosan hydrogel to enhance power production in microbial fuel cells. Chem Eng J 380:122522. https://doi.org/10.1016/j.cej.2019.122522

    Article  CAS  Google Scholar 

  6. Li M, Zhang H et al (2018) Low-cost biochar derived from corncob as oxygen reduction catalyst in air cathode microbial fuel cells. Electrochim Acta 283:780–788. https://doi.org/10.1016/j.electacta.2018.07.010

    Article  CAS  Google Scholar 

  7. Li C, Zhou E, Yu Z, Liu H, Xiong M (2020) Tailor-made open porous 2D CoFe/SN-carbon with slightly weakened adsorption strength of ORR/OER intermediates as remarkable electrocatalysts toward zinc-air batteries. Appl Catal B Environ 269:118771. https://doi.org/10.1016/j.apcatb.2020.118771

    Article  CAS  Google Scholar 

  8. Yan X, Tu Y, Yuan H, Xia Y, Jiang Y, Zhu S, Li C, Tang H, Du P, Lei M (2023) Experimental and theoretical insights into cobalt nanoparticles encapsulated in N- and S-codoped carbon as advanced bifunctional electrocatalyst for rechargeable zinc-air batteries. Adv Compos Hybrid Mater 6:71. https://doi.org/10.1007/s42114-023-00656-x

    Article  CAS  Google Scholar 

  9. Liu D, Mo X, Li K et al (2017) The performance of spinel bulk-like oxygen-deficient CoGa2O4 as an air-cathode catalyst in microbial fuel cell. J Power Sources 359:355–362. https://doi.org/10.1016/j.jpowsour.2017.05.080

    Article  CAS  Google Scholar 

  10. Das I, Noori MT, Shaikh M et al (2020) Synthesis and application of zirconium metal–organic framework in microbial fuel cells as a cost-effective oxygen reduction catalyst with competitive performance. ACS Appl Energy Mater 3:3512–3520. https://doi.org/10.1021/acsaem.0c00054

    Article  CAS  Google Scholar 

  11. Kodali M, Herrera S, Kabir S et al (2018) Enhancement of microbial fuel cell performance by introducing a nano-composite cathode catalyst. Electrochim Acta 265:56–64. https://doi.org/10.1016/j.electacta.2018.01.118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Li S, Cheng C, Thomas A (2017) Carbon-based microbial-fuel-cell electrodes: from conductive supports to active catalysts. Adv Mater 29:1602547. https://doi.org/10.1002/adma.201602547

    Article  CAS  Google Scholar 

  13. Qiu S, Guo Z, Naz F et al (2021) An overview in the development of cathode materials for the improvement in power generation of microbial fuel cells. Bioelectrochemistry 141:107834. https://doi.org/10.1016/j.bioelechem.2021.107834

    Article  CAS  PubMed  Google Scholar 

  14. Liu W, Zheng L, Cheng S et al (2020) Cobalt-nitrogen-carbon nanotube co-implanted activated carbon as efficient cathodic oxygen reduction catalyst in microbial fuel cells. J Electroanal Chem 876:114498. https://doi.org/10.1016/j.jelechem.2020.114498

    Article  CAS  Google Scholar 

  15. Liu Y, Liu Z (2018) Promoted activity of nitrogen-doped activated carbon as a highly efficient oxygen reduction catalyst in microbial fuel cells. J Appl Electrochem 49:119–133. https://doi.org/10.1007/s10800-018-1263-6

    Article  CAS  Google Scholar 

  16. Govindasamy M, Shanthi S, Elaiyappilla E et al (2019) Fabrication of hierarchical NiCo2S4@CoS2 nanostructures on highly conductive flexible carbon cloth substrate as a hybrid electrode material for supercapacitors with enhanced electrochemical performance. Electrochim Acta 293:328–337. https://doi.org/10.1016/j.electacta.2018.10.051

    Article  CAS  Google Scholar 

  17. Hu X, Chen Y, Zhang M et al (2019) Alveolate porous carbon aerogels supported Co9S8 derived from a novel hybrid hydrogel for bifunctional oxygen electrocatalysis. Carbon 144:557–566. https://doi.org/10.1016/j.carbon.2018.12.099

    Article  CAS  Google Scholar 

  18. Ding F, Liu H, Jiang X et al (2022) Co9S8 nanoparticles encapsulated in N, S co-doped hierarchical carbon as an efficient oxygen reduction electrocatalyst for microbial fuel cells. J Electroanal Chem 909:116130. https://doi.org/10.1016/j.jelechem.2022.116130

    Article  CAS  Google Scholar 

  19. Wang F, Zhang P, You S et al (2020) Co8FeS8 wrapped in auricularia-derived N-doped carbon with a micron-size spherical structure as an efficient cathode catalyst for strengthening charge transfer and bioelectricity generation. J Colloid Interface Sci 567:65–74. https://doi.org/10.1016/j.jcis.2020.01.122

    Article  CAS  PubMed  Google Scholar 

  20. Li M, Cheng JP, Wang J et al (2016) The growth of nickel-manganese and cobalt-manganese layered double hydroxides on reduced graphene oxide for supercapacitor. Electrochim Acta 206:108–115. https://doi.org/10.1016/j.electacta.2016.04.084

    Article  CAS  Google Scholar 

  21. Abbasi L, Arvand M, Moosavifard SE et al (2020) Facile template-free synthesis of 3D hierarchical ravine-like interconnected MnCo2S4 nanosheet arrays for hybrid energy storage device. Carbon 161:299–308. https://doi.org/10.1016/j.jpowsour.2020.228582

    Article  CAS  Google Scholar 

  22. Lan G, Li H, Shen J (2022) Bimetallic zeolitic imidazole framework derived Co@NC materials as oxygen reduction reaction catalysts application for microbial fuel cells. Int J Hydrogen Energy 47:10701–10714. https://doi.org/10.1016/j.carbon.2020.01.094

    Article  CAS  Google Scholar 

  23. Hu Z, Zhou X, Lu Y et al (2019) CoMn2O4 doped reduced graphene oxide as an effective cathodic electrocatalyst for ORR in microbial fuel cells. Electrochim Acta 296:214–223. https://doi.org/10.1016/j.electacta.2018.11.004

    Article  CAS  Google Scholar 

  24. Li W, Wang F, Zhang Z et al (2022) Graphitic carbon layer-encapsulated Co nanoparticles embedded on porous carbonized wood as a self-supported chainmail oxygen electrode for rechargeable Zn-air batteries. Appl Catal B Environ 317:121758. https://doi.org/10.1016/j.apcatb.2022.121758

    Article  CAS  Google Scholar 

  25. Wang Y, Zhong K, Li H et al (2021) Bimetallic hybrids modified with carbon nanotubes as cathode catalysts for microbial fuel cell: effective oxygen reduction catalysis and inhibition of biofilm formation. J Power Sources 485:229273. https://doi.org/10.1016/j.jpowsour.2020.229273

    Article  CAS  Google Scholar 

  26. Dai Z, Feng X, Li Q et al (2021) Construction of porous core-shell MnCo2S4 microrugby balls for efficient oxygen evolution reaction. J Alloys Compd 872:159652. https://doi.org/10.1016/j.jallcom.2021.159652

    Article  CAS  Google Scholar 

  27. Zhang J, Li C, Fan M et al (2021) Two-dimensional nanosheets constituted trimetal Ni–Co–Mn sulfide nanoflower-like structure for high-performance hybrid supercapacitors. Appl Surf Sci 565:150482. https://doi.org/10.1016/j.apsusc.2021.150482

    Article  CAS  Google Scholar 

  28. Liang B, Zhang X, Zhong M et al (2021) Transition metal (Fe Co, Ni) and sulfur codoped nitrogen-enriched hydrothermal carbon as high-performance cathode catalyst for microbial fuel cell. J Power Sources 506:230178. https://doi.org/10.1016/j.jpowsour.2021.230178

    Article  CAS  Google Scholar 

  29. Ma L, Hu Y, Chen R et al (2016) Self-assembled ultrathin NiCo2S4 nanoflakes grown on Ni foam as high-performance flexible electrodes for hydrogen evolution reaction in alkaline solution. Nano Energy 24:139–147. https://doi.org/10.1016/j.nanoen.2016.04.024

    Article  CAS  Google Scholar 

  30. Li H, Sun Y, Wang J et al (2022) Nanoflower-branch LDHs and CoNi alloy derived from electrospun carbon nanofibers for efficient oxygen electrocatalysis in microbial fuel cells. Appl Catal B Environ 307:121136. https://doi.org/10.1016/j.apcatb.2022.121136

    Article  CAS  Google Scholar 

  31. Zhang S, Su W, Li K et al (2018) Metal organic framework-derived Co3O4/NiCo2O4 double-shelled nanocage modified activated carbon air-cathode for improving power generation in microbial fuel cell. J Power Sources 396:355–362. https://doi.org/10.1016/j.jpowsour.2018.06.057

    Article  CAS  Google Scholar 

  32. Dang A, Sun Y, Fang C et al (2022) Rational design of Ti3C2/carbon nanotubes/MnCo2S4 electrodes for symmetric supercapacitors with high energy storage. Appl Surf Sci 581:152432. https://doi.org/10.1016/j.apsusc.2022.152432

    Article  CAS  Google Scholar 

  33. Zhong K, Wang Y, Wu Q et al (2020) Highly conductive skeleton graphitic-C3N4 assisted Fe-based metal-organic frameworks derived porous bimetallic carbon nanofiber for enhanced oxygen-reduction performance in microbial fuel cells. J Power Sources 467:228313. https://doi.org/10.1016/j.jpowsour.2020.228313

    Article  CAS  Google Scholar 

  34. Wang X, Yuan C, Shao C et al (2020) Enhancing oxygen reduction reaction by using metal-free nitrogen-doped carbon black as cathode catalysts in microbial fuel cells treating wastewater. Environ Res 182:109011. https://doi.org/10.1016/j.envres.2019.109011

    Article  CAS  PubMed  Google Scholar 

  35. Jiang J, Zhang S, Li S et al (2022) Magnetized manganese-doped watermelon rind biochar as a novel low-cost catalyst for improving oxygen reduction reaction in microbial fuel cells. Sci Total Environ 802:149989. https://doi.org/10.1016/j.scitotenv.2021.149989

    Article  CAS  PubMed  Google Scholar 

  36. Liu Y, Fan YS, Liu ZM (2019) Pyrolysis of iron phthalocyanine on activated carbon as highly efficient non-noble metal oxygen reduction catalyst in microbial fuel cells. Chem Eng J 361:416–427. https://doi.org/10.1016/j.cej.2018.12.105

    Article  CAS  Google Scholar 

  37. Yan Y, Hou Y, Yu Z et al (2022) B-doped graphene quantum dots implanted into bimetallic organic framework as a highly active and robust cathodic catalyst in the microbial fuel cell. Chemosphere 286:131908. https://doi.org/10.1016/j.chemosphere.2021.131908

    Article  CAS  PubMed  Google Scholar 

  38. Huang Q, Zhou P, Yang H et al (2017) In situ generation of inverse spinel CoFe2O4 nanoparticles onto nitrogen-doped activated carbon for an effective cathode electrocatalyst of microbial fuel cells. Chem Eng J 325:466–473. https://doi.org/10.1016/j.cej.2017.05.079

    Article  CAS  Google Scholar 

  39. Khajeh R, Aber S, Zarei M (2020) Comparison of NiCo2O4, CoNiAl-LDH, and CoNiAl-LDH@ NiCo2O4 performances as ORR catalysts in MFC cathode. Renew Energy 154:1263–1271. https://doi.org/10.1016/j.renene.2020.03.091

    Article  CAS  Google Scholar 

  40. Chaturvedi A, Chaturvedi A, Nagaiah TC et al (2021) Synthesis of Co/Ni @ Al2O3-GO as novel oxygen reduction electrocatalyst for sustainable bioelectricity production in single-chambered microbial fuel cells. J Environ Chem Eng 9:106054. https://doi.org/10.1016/j.jece.2021.106054

    Article  CAS  Google Scholar 

  41. Tang H, Zeng Y, Zeng Y et al (2017) Iron-embedded nitrogen doped carbon frameworks as robust catalyst for oxygen reduction reaction in microbial fuel cells. Appl Catal B Environ 202:550–556. https://doi.org/10.1016/j.apcatb.2016.09.062

    Article  CAS  Google Scholar 

  42. Ahmadpour T, Aber S, Hosseini MG (2020) Improved dye degradation and simultaneous electricity generation in a photoelectrocatalytic microbial fuel cell equipped with AgBr/CuO hybrid photocathode. J Power Sources 474:228589. https://doi.org/10.1016/j.jpowsour.2020.228589

    Article  CAS  Google Scholar 

  43. Rezaei A, Aber S, Roberts DJ et al (2022) Synthesis and study of CuNiTiO3 as an ORR electrocatalyst to enhance microbial fuel cell efficiency. Chemosphere 307:135709. https://doi.org/10.1016/j.chemosphere.2022.135709

    Article  CAS  PubMed  Google Scholar 

  44. Mahmoud M, Gad-Allah T, El-Khatib K et al (2011) Power generation using spinel manganese-cobalt oxide as a cathode catalyst for microbial fuel cell applications. Bioresource Technol 102:10459–10464. https://doi.org/10.1016/j.biortech.2011.08.123

    Article  CAS  Google Scholar 

  45. Jiang L, Chen J, An Y et al (2020) Enhanced electrochemical performance by nickel-iron layered double hydroxides (LDH) coated on Fe3O4 as a cathode catalyst for single-chamber microbial fuel cells. Sci Total Environ 745:141163. https://doi.org/10.1016/j.scitotenv.2020.141163

    Article  CAS  PubMed  Google Scholar 

  46. Liang B, Zhao Y, Zong M et al (2020) Hierarchically porous N-doped carbon encapsulating CoO/MgO as superior cathode catalyst for microbial fuel cell. Chem Eng J 385:123861. https://doi.org/10.1016/j.cej.2019.123861

    Article  CAS  Google Scholar 

  47. Yang W, Wang X, Son M et al (2020) Simultaneously enhancing power density and coulombic efficiency with a hydrophobic Fe–N4/activated carbon air cathode for microbial fuel cells. J Power Sources 465:228264. https://doi.org/10.1016/j.jpowsour.2020.228264

    Article  CAS  Google Scholar 

  48. Gong X, Zhong H, Estudillo-Wong LA, Alonso-Vante N, Feng Y, Li D (2022) Bifunctional oxygen electrode cobalt–nickel sulfides catalysts originatedfrom intercalated LDH precursors. J Energy Chem 74:376–386. https://doi.org/10.1016/j.jechem.2022.07.039

    Article  CAS  Google Scholar 

  49. Nasrin K, Subramani K, Karnan M, Sathish M (2021) MnCo2S4–MXene: a novel hybrid electrode material for high performance long-life asymmetric supercapattery. J Colloid Interface Sci 600:264–277. https://doi.org/10.1016/j.jcis.2021.05.037

    Article  CAS  PubMed  Google Scholar 

  50. Adhikari S, Noh G, Sivagurunathan A, Kim D (2023) Atomic surface regulated nanoarchitectured MnCo2S4@ALD-CoOx positrode with rich redox active sites for high-performance supercapacitors. Chem Eng J 466:143177. https://doi.org/10.1016/j.cej.2023.143177

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support for this work was provided by the Natural Science Foundation of Ningxia province for forceful policy support (project no. 2021AAC03177).

Author information

Authors and Affiliations

Authors

Contributions

JL: Investigation, Writing—original draft. LR: Writing-review & editing. CL: Data curation. HL: Conceptualization, Methodology, Supervision, Project administration, Resources, Writing—review & editing.

Corresponding author

Correspondence to Hua Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1740 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, J., Ren, L., Li, C. et al. A Reasonable Design of MnCo2S4 and Activated Carbon Composite as Cathode Catalyst to Improve the Power Output of Microbial Fuel Cells. Catal Lett 154, 2340–2352 (2024). https://doi.org/10.1007/s10562-023-04481-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-023-04481-1

Keywords

Navigation