Skip to main content
Log in

Imidazolium Sulfonic Acid Chloride Ionic Liquid Functionalized NiS-Graphitic Carbon Nitride as a Solid Acid–Base Bifunctional Catalyst for Knoevenagel Condensation Reactions

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The development of rational acid–base bifunctional heterogeneous catalysts for organic transformation reactions is a challenging procedure. An imidazolium sulfonic acid chloride ionic liquid immobilized NiS doped graphitic carbon nitride (NiS-gC3N4-IL) catalyst that is very effective, non-toxic, inexpensive, and capable of both acid and base reactions has been prepared. As prepared NiS-gC3N4-IL catalyst has a high catalytic potential for the Knoevenagel condensation reaction. In addition to the basic nature of the NiS-gC3N4-IL catalyst due to the existence of N-containing moieties, the acidic nature of the catalyst is also contributed by –SO3H groups of ionic liquid. These properties make this catalyst function as both acid as well as a base catalyst. The structural and morphological properties of the synthesized catalyst were thoroughly explored. The polycrystallinity of the amorphous g-C3N4 was produced as a result of the functionalization of ionic liquid. The remarkable catalytic activity of the NiS-gC3N4-IL nanosheets is demonstrated by the high yields of the products in less time and at optimal temperatures. The NiS-gC3N4-IL catalyst is highly efficient towards Knoevenagel condensation of nitrobenzaldehyde with 98% yield using ethanol as solvent. In addition, the catalyst showed exceptional recyclability and reusability. The catalyst is environmentally friendly, and the process is sustainable.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 2
Scheme 3
Fig. 7

Similar content being viewed by others

Data Availability

Data will be available on request.

References

  1. Das A, Thomas KRJ (2022) Rose bengal photocatalyzed Knoevenagel condensation of aldehydes and ketones in aqueous medium. Green Chem 24:4952–4957

    Article  CAS  Google Scholar 

  2. Gianotti E, Diaz U, Velty A, Corma A (2013) Designing bifunctional acid–base mesoporous hybrid catalysts for cascade reactions. Catal Sci Technol 3:2677–2688

    Article  CAS  Google Scholar 

  3. Tran UP, Le KK, Phan NT (2011) Expanding applications of metal-organic frameworks: zeolite imidazolate framework ZIF-8 as an efficient heterogeneous catalyst for the Knoevenagel reaction. ACS Catal 1:120–127

    Article  CAS  Google Scholar 

  4. Schneider EM, Zeltner M, Kränzlin N, Grass RN, Stark WJ (2015) Base-free Knoevenagel condensation catalyzed by copper metal surfaces. Chem Commun 51:10695–10698

    Article  CAS  Google Scholar 

  5. Kumari K, Choudhary P, Sharma D, Krishnan V (2023) Amine-functionalized graphitic carbon nitride as a sustainable metal-free catalyst for Knoevenagel condensation. Ind Eng Chem Res 62:158–168

    Article  CAS  Google Scholar 

  6. Opanasenko M, Dhakshinamoorthy A, Shamzhy M, Nachtigall P, Horáček M, Garcia H (2013) Comparison of the catalytic activity of MOFs and zeolites in Knoevenagel condensation. Catal Sci Technol 3:500–507

    Article  CAS  Google Scholar 

  7. LlabrésXamena FX, GarcíaCirujano F, CormaCanós A (2012) An unexpected bifunctional acid base catalysis in IRMOF-3 for Knoevenagel condensation reactions. Microporous Mesoporous Mater 157:112–117

    Article  Google Scholar 

  8. An Z, Guo Y, Zhao L, Li Z, He J (2014) l-Proline-grafted mesoporous silica with alternating hydrophobic and hydrophilic blocks to promote direct asymmetric aldol and Knoevenagel-Michael cascade reactions. ACS Catal 4:2566–2576

    Article  CAS  Google Scholar 

  9. Parida K, Mallick S, Sahoo P, Rana S (2010) A facile method for synthesis of amine-functionalized mesoporous zirconia and its catalytic evaluation in Knoevenagel condensation. Appl Catal A 381:226–232

    Article  CAS  Google Scholar 

  10. Rana S, Jonnalagadda SB (2017) Synthesis and characterization of amine functionalized graphene oxide and scope as catalyst for Knoevenagel condensation reaction. Catal Commun 92:31–34

    Article  CAS  Google Scholar 

  11. Tuci G, Luconi L, Rossin A, Berretti E, Ba H, Innocenti M, Yakhvarov D, Caporali S, Pham-Huu C, Giambastiani G (2016) Aziridine-functionalized multiwalled carbon nanotubes: robust and versatile catalysts for the oxygen reduction reaction and Knoevenagel condensation. ACS Appl Mater Interfaces 8:30099–30106

    Article  CAS  PubMed  Google Scholar 

  12. Wang X, Li J, Chen G, Guo Z, Zhou Y, Wang J (2015) Hydrophobic mesoporous poly(ionic liquid)s towards highly efficient and contamination-resistant solid-base catalysts. ChemCatChem 7:993–1003

    Article  CAS  Google Scholar 

  13. Wang X, Zhang L, Guo Z, Shi Y, Zhou Y, Wang J (2019) Synergistic catalysis of one-pot cascade reactions by acidic and basic binary porous polymers. Appl Surf Sci 478:221–229

    Article  CAS  Google Scholar 

  14. Sharma D, Choudhary P, Kumar S, Krishnan V (2023) Transition metal phosphide nanoarchitectonics for versatile organic catalysis. Small 19:2207053

    Article  CAS  Google Scholar 

  15. Motokura K, Tada M, Iwasawa Y (2009) Layered materials with coexisting acidic and basic sites for catalytic one-pot reaction sequences. J Am Chem Soc 131:7944–7945

    Article  CAS  PubMed  Google Scholar 

  16. Shiju NR, Alberts AH, Khalid S, Brown DR, Rothenberg G (2011) Mesoporous silica with site-isolated amine and phosphotungstic acid groups: a solid catalyst with tunable antagonistic functions for one-pot tandem reactions. Angew Chem 123:9789–9793

    Article  Google Scholar 

  17. Zhao J, Lin B, Zhu Y, Zhou Y, Liu H (2018) Phosphor-doped hexagonal boron nitride nanosheets as effective acid–base bifunctional catalysts for one-pot deacetalization–Knoevenagel cascade reactions. Catal Sci Technol 8:5900–5905

    Article  CAS  Google Scholar 

  18. Rao C, Pramoda K (2019) Borocarbonitrides, BxCyNz, 2D nanocomposites with novel properties. Bull Chem Soc Jpn 92:441–468

    Article  CAS  Google Scholar 

  19. Kumar A, Raizada P, Singh P, Saini RV, Saini AK, Hosseini-Bandegharaei A (2020) Perspective and status of polymeric graphitic carbon nitridebased Z-scheme photocatalytic systems for sustainable photocatalytic water purification. Chem Eng J 391:123496

    Article  CAS  Google Scholar 

  20. Hu C, Liu D, Xiao Y, Dai L (2018) Functionalization of graphene materials by heteroatom-doping for energy conversion and storage. Prog Nat Sci Mater Int 28:121–132

    Article  CAS  Google Scholar 

  21. Jin H, Feng X, Li J, Li M, Xia Y, Yuan Y, Yang C, Dai B, Lin Z, Wang J (2019) Heteroatom-doped porous carbon materials with unprecedented high volumetric capacitive performance. Angew Chem 131:2419–2423

    Article  Google Scholar 

  22. Song J, Gordin ML, Xu T, Chen S, Yu Z, Sohn H, Lu J, Ren Y, Duan Y, Wang D (2015) Strong lithium polysulfide chemisorption on electroactive sites of nitrogen-doped carbon composites for high-performance lithium-sulfur battery cathodes. Angew Chem 127:4399–4403

    Article  Google Scholar 

  23. Zhang J, Dai L (2015) Heteroatom-doped graphitic carbon catalysts for efficient electrocatalysis of oxygen reduction reaction. ACS Catal 5:7244–7253

    Article  CAS  Google Scholar 

  24. Choudhary P, Kumari K, Sharma D, Kumar S, Krishnan V (2023) Surface nanoarchitectonics of boron nitride nanosheets for highly efficient and sustainable ipso-hydroxylation of arylboronic acids. ACS Appl Mater Interfaces 15:9412–9420

    Article  CAS  Google Scholar 

  25. Deng Y, Xie Y, Zou K, Ji X (2016) Review on recent advances in nitrogen-doped carbons: preparations and applications in supercapacitors. J Mater Chem A 4:1144–1173

    Article  CAS  Google Scholar 

  26. Thomas A, Fischer A, Goettmann F, Antonietti M, Muller J, Schlogl R, Carlsson JM (2008) Graphitic carbon nitride materials: variation of structure and morphology and their use as metal-free catalysts. J Mater Chem 18:4893–4908

    Article  CAS  Google Scholar 

  27. Hao Q, Jia G, Wei W, Vinu A, Wang Y, Arandiyan H, Ni BJ (2020) Graphitic carbon nitride with different dimensionalities for energy and environmental applications. Nano Res 13:18–37

    Article  CAS  Google Scholar 

  28. Huang D, Yan X, Yan M, Zeng G, Zhou C, Wan J, Cheng M, Xue W (2018) Graphitic carbon nitride-based heterojunction photoactive nanocomposites: applications and mechanism insight. ACS Appl Mater Interfaces 10:21035–21055

    Article  CAS  PubMed  Google Scholar 

  29. Cao S, Low J, Yu J, Jaroniec M (2015) Polymeric photocatalysts based on graphitic carbon nitride. Adv Mater 27:2150–2176

    Article  CAS  PubMed  Google Scholar 

  30. Kumar A, Choudhary P, Kumar K, Kumar A, Krishnan V (2021) Plasmon-induced hot electron generation in two-dimensional carbonaceous nanosheets decorated with Au nanostars: enhanced photocatalytic activity under visible light. Mater Chem Front 5:1448–1467

    Article  CAS  Google Scholar 

  31. Hasija V, Nguyen VH, Kumar A, Raizada P, Krishnan V, Khan AAP, Singh P, Lichtfouse E, Wang C, Huong PT (2021) Advanced activation of persulfate by polymeric g-C3N4 based photocatalysts for environmental remediation: a review. J Hazard Mater 413:125324

    Article  CAS  PubMed  Google Scholar 

  32. Kumar A, Choudhary P, Chhabra T, Kaur H, Kumar A, Qamar M, Krishnan V (2023) Frontier nanoarchitectonics of graphitic carbon nitride based plasmonic photocatalysts and photoelectrocatalysts for energy, environment and organic reactions. Mater Chem Front 7:1197–1247

    Article  CAS  Google Scholar 

  33. Chhabra T, Bahuguna A, Dhankhar SS, Nagaraja C, Krishnan V (2019) Sulfonated graphitic carbon nitride as a highly selective and efficient heterogeneous catalyst for the conversion of biomass-derived saccharides to 5-hydroxymethylfurfural in green solvents. Green Chem 21:6012–6026

    Article  CAS  Google Scholar 

  34. Bahuguna A, Choudhary P, Chhabra T, Krishnan V (2018) Ammonia-doped polyaniline–graphitic carbon nitride nanocomposite as green catalyst for synthesis of indole-substituted 4 H-chromenes. ACS Omega 3:12163–12178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Li J, Xu X, Zhang B, Hou W, Lv S, Shi Y (2020) Controlled synthesis and fine-tuned interface of NiS nanoparticles/Bi2WO6 nanosheets heterogeneous as electrocatalyst for oxygen evolution reaction. Appl Surf Sci 526:20246718

    Article  Google Scholar 

  36. Chakraborty D, Devi M, Das B, Barbhuiya MH, Dhar SS, Chowdhury A (2021) A benevolent direction to environmental suitability: ionic liquid immobilized MoO3 nanoparticles used in the efficient visible light-driven photocatalytic degradation of antibiotics. New J Chem 45:12922–12930

    Article  CAS  Google Scholar 

  37. Trivedi MK, Branton A, Trivedi D, Nayak G, Saikia G, Jana S (2018) Physical and structural characterization of biofield treated imidazole derivatives. Nat Prod Chem Res. https://doi.org/10.4172/2329-6836.1000187

    Article  Google Scholar 

  38. Chakraborty D, Devi M, Das B, Dhar SS (2022) Core-shell assembly of ZrO2 nanoparticles with ionic liquid: a novel and highly efficient heterogeneous catalysts for Biginelli and esterification reactions. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-022-23136-z

    Article  Google Scholar 

  39. Rhodes CP, Frech R (1999) Cation–anion and cation–polymer interactions in (PEO)nNaCF3SO3 (n = 1–80). Solid State Ion 121:91–99. https://doi.org/10.1016/S0167-2738(98)00534-7

    Article  CAS  Google Scholar 

  40. Jutarosaga T, Jeoung JS, Seraphin S (2005) Infrared spectroscopy of Si–O bonding in low-dose low-energy separation by implanted oxygen materials. Thin Solid Films 476:303–311

    Article  CAS  Google Scholar 

  41. Bhuyan B, Paul B, Vadivel S, Dhar SS (2016) Preparation and characterization of WO3 bonded imidazolium sulfonic acid chloride as a novel and green ionic liquid catalyst for the synthesis of adipic acid. RSC Adv. https://doi.org/10.1039/C6RA16098K

    Article  Google Scholar 

  42. Thomas A, Fischer A, Goettmann F, Antonietti M, Müller JO, Schlögl R, Carlsson JM (2008) Graphitic carbon nitride materials: variation of structure and morphology and their use as metal-free catalysts. J Mater Chem 18:4893–4908. https://doi.org/10.1039/B800274F

    Article  CAS  Google Scholar 

  43. Verma S, Baig RN, Nadagouda MN, Len C, Varma RS (2017) Sustainable pathway to furanics from biomass via heterogeneous organo-catalysis. Green Chem 19:164–168. https://doi.org/10.1039/C6GC02551J

    Article  CAS  PubMed  Google Scholar 

  44. Yan X, Xu T, Chen G, Yang S, Liu H, Xue Q (2004) Preparation and characterization of electrochemically deposited carbon nitride films on silicon substrate. J Phys D 37:907. https://doi.org/10.1088/0022-3727/37/6/015

    Article  CAS  Google Scholar 

  45. Ghosh A, Ghosh S, Seshadhri GM, Ramaprabhu S (2019) Green synthesis of nitrogen-doped self-assembled porous carbon-metal oxide composite towards energy and environmental applications. Sci Rep 9:1–13. https://doi.org/10.1038/s41598-019-41700-5

    Article  CAS  Google Scholar 

  46. Wang H, Li X, Ruan Q, Tang J (2020) Ru and RuOx decorated carbon nitride for efficient ammonia photosynthesis. Nanoscale. https://doi.org/10.1039/D0NR02527E

    Article  PubMed  PubMed Central  Google Scholar 

  47. Foelske-Schmitz A, Weingarth D, Kötz R (2011) XPS analysis of activated carbon supported ionic liquids: enhanced purity and reduced charging. Surf Sci 605:1979–1985

    Article  CAS  Google Scholar 

  48. Fechler N, Fellinger TP, Antonietti M (2013) One-pot synthesis of nitrogen–sulfur-co-doped carbons with tunable composition using a simple isothiocyanate ionic liquid. J Mater Chem A. https://doi.org/10.1039/C3TA13435K

    Article  Google Scholar 

  49. Wenlei X, Hao W (2020) Immobilized polymeric sulfonated ionic liquid on core-shell structured Fe3O4/SiO2 composites: a magnetically recyclable catalyst for simultaneous transesterification and esterifications of low-cost oils to biodiesel. Renew Energy 145:1709–1719

    Article  Google Scholar 

  50. Choudhary P, Sen A, Kumar A, Dhingra S, Nagaraja CM, Krishnan V (2021) Sulfonic acid functionalized graphitic carbon nitride as solid acid–base bifunctional catalyst for Knoevenagel condensation and multicomponent tandem reactions. Mater Chem Front 5:6265

    Article  CAS  Google Scholar 

  51. Wang Z, Yuan X, Zhang T, Luo J (2018) An efficient and recyclable acid–base bifunctional core–shell nano-catalyst for the one-pot deacetalization-Knoevenagel tandem reaction. New J Chem 42:11610–11615

    Article  CAS  Google Scholar 

  52. Burange AS, Tugaonkar PS, Thakur SD, Khan RR, Shukla R (2020) Nano-crystalline HoCrO4: efficient catalyst for Knoevenagel condensation in water: first catalytic application of Cr(V) species. Nano-Struct Nano-Objects 23:100493

    Article  CAS  Google Scholar 

  53. Masoomi MY, Beheshti S, Morsali A (2014) Mechanosynthesis of new azine-functionalized Zn(ii) metal–organic frameworks for improved catalytic performance. J Mater Chem 2:16863–16866

    Article  CAS  Google Scholar 

  54. Tran UPN, Le KKA, Phan NTS (2011) Expanding applications of metal−organic frameworks: zeolite imidazolate framework ZIF-8 as an efficient heterogeneous catalyst for the Knoevenagel reaction. ACS Catal 1:120–127

    Article  CAS  Google Scholar 

  55. Fan W, Wang Y, Xiao Z, Zhang L, Gong Y, Dai F, Wang R, Sun D (2017) A stable amino-functionalized interpenetrated metal-organic framework exhibiting gas selectivity and pore-size-dependent catalytic performance. Inorg Chem 56:13634–13637

    Article  CAS  PubMed  Google Scholar 

  56. Dhakshinamoorthy A, Heidenreich N, Lenzen D, Stock N (2017) Knoevenagel condensation reaction catalysed by Al-MOFs with CAU-1 and CAU-10-type structures. CrystEngComm 19:4187–4193

    Article  CAS  Google Scholar 

  57. Almasi M, Zelenak V, Opanasenko M, Cejka J (2014) A novel nickel metal–organic framework with fluorite-like structure: gas adsorption properties and catalytic activity in Knoevenagel condensation. Dalton Trans 43:3730–3738

    Article  CAS  PubMed  Google Scholar 

  58. Zengjing G, Qiuwei J, Yuming S, Jing L, Xiaoning Y, Wei H, Yu Z, Jun W (2017) Tethering dual hydroxyls into mesoporous poly(ionic liquid)s for chemical fixation of CO2 at ambient conditions: a combined experimental and theoretical study. ACS Catal 10:6770–6780

    Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge IIT Bombay, AMRC IIT Mandi, IIT Guwahati and NIT Silchar for providing various analytical results and infrastructural facilities.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

DC—Validation, data curation, and writing. LB—investigation and visualization. JK—investigation and visualization. SSD—Visualization and Supervision.

Corresponding author

Correspondence to Siddhartha Sankar Dhar.

Ethics declarations

Conflict of interest

There is no conflict of interest to declare.

Ethical Approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1337 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chakraborty, D., Bharali, L., Kalita, J. et al. Imidazolium Sulfonic Acid Chloride Ionic Liquid Functionalized NiS-Graphitic Carbon Nitride as a Solid Acid–Base Bifunctional Catalyst for Knoevenagel Condensation Reactions. Catal Lett 154, 2353–2369 (2024). https://doi.org/10.1007/s10562-023-04478-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-023-04478-w

Keywords

Navigation