Skip to main content
Log in

Facile preparation of Mg-doped graphitic carbon nitride composites as a solid base catalyst for Knoevenagel condensations

  • Chemical routes to materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Mg-doped graphitic carbon nitride (g-C3N4) composites were prepared using a facile thermal polymerization process under air atmosphere. The obtained materials can be employed as the solid base catalysts in Knoevenagel condensation reactions. The Mg-doped g-C3N4 composites show excellent performance as a solid catalyst and superior catalytic activity compared to the pure CN-U. The introduction of Mg species improved the overall basic property of CN-U, favoring Knoevenagel condensations. The 5MgCN-U catalyst exhibited high benzaldehyde conversion of 97.4% at 70 °C and good cycling stability for four cycles, with 87.7% benzaldehyde conversion and nearly 100% benzylidene malononitrile selectivity. Additionally, the Mg-doped g-C3N4 composites from urea showed superior catalytic performance than those produced from dicyandiamide and melamine, indicating that the precursors contribute to the efficiency of Knoevenagel condensation reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  1. Zapf A, Beller M (2002) Fine chemical synthesis with homogeneous palladium catalysts: examples, status and trends. Top Catal 19:101–109

    Article  Google Scholar 

  2. Freeman F (1980) Properties and reactions of ylidenemalononitriles. Chem Rev 80:329–350

    Article  Google Scholar 

  3. Sheldon RA (1996) Selective catalytic synthesis of fine chemicals: opportunities and trends. J Mol Catal A: Chem 107:75–83

    Article  Google Scholar 

  4. Su FZ, Antonietti M, Wang XC (2012) Mpg-C3N4 as a solid base catalyst for Knoevenagel condensations and transesterification reactions. Catal Sci Technol 2:1005–1009

    Article  Google Scholar 

  5. Kubota Y, Nishizaki Y, Sugi Y (2000) High catalytic activity of as-synthesized, ordered porous silicate-quaternary ammonium composite for Knoevenagel condensation. Chem Lett 29:998–999

    Article  Google Scholar 

  6. Balalaie S, Sheikh-Ahmadi M, Bararjanian M (2007) Tetra-methyl ammonium hydroxide: an efficient and versatile catalyst for the one-pot synthesis of tetrahydrobenzo[b]pyran derivatives in aqueous media. Catal Commun 8:1724–1728

    Article  Google Scholar 

  7. Weitkamp J, Hunger M, Rymsa U (2001) Base catalysis on microporous and mesoporous materials: recent progress and perspectives. Microporous Mesoporous Mater 48:255–270

    Article  Google Scholar 

  8. Climent MJ, Corma A, Iborra S, Velty A (2004) Activated hydrotalcites as catalysts for the synthesis of chalcones of pharmaceutical interest. J Catal 22:1474–1482

    Google Scholar 

  9. Liu Z, Cortes-Concepcion JA, Mustian M, Amiridis MD (2006) Effect of basic properties of MgO on the heterogeneous synthesis of flavanone. Appl Catal A Gen 30:2232–2236

    Google Scholar 

  10. Wang XG, Tseng YH, Chan JCC, Cheng SF (2005) Catalytic applications of aminopropylated mesoporous silica prepared by a template-free route in flavanones synthesis. J Catal 233:266–275

    Article  Google Scholar 

  11. Goa Y, Wu P, Tasumi T (2004) Liquid-phase Knoevenagel reactions over modified basic microporous titanosilicate ETS-10. J Catal 224:107–114

    Article  Google Scholar 

  12. Ugale B, Nagaraja CM (2016) Construction of 2D interwoven and 3D metal–organic frameworks (MOFs) of Cd(II): the effect of ancillary ligands on the structure and the catalytic performance for the Knoevenagel reaction. RSC Adv 6:28854–28864

    Article  Google Scholar 

  13. Ugale B, Sandeep SD, Nagaraja CM (2017) Construction of 3D homochiral metal–organic frameworks (MOFs) of Cd(II): selective CO2 adsorption and catalytic properties for the Knoevenagel and Henry reaction. Inorg Chem Front 4:348–359

    Article  Google Scholar 

  14. Parida KM, Rath D (2009) Amine functionalized MCM-41: an active and reusable catalyst for Knoevenagel condensation reaction. J Mol Catal A: Chem 310:93–100

    Article  Google Scholar 

  15. Bezerra DP, Azevedo DCS, Pinheiro LG, Filho JM, Oliveira AC (2015) Production of α, β-unsaturated esters via Knoevenagel condensation of buthyraldehyde and ethyl cyanoacetate over amine-containing carbon catalyst. Chem Eng J 264:565–569

    Article  Google Scholar 

  16. Serp P, Corrias M, Kalck P (2003) Carbon nanotubes and nanofibers in catalysis. Appl Catal A Gen 253:337–358

    Article  Google Scholar 

  17. Arrigo R, Havecker M, Wrabetz S, Blume R, Lerch M, McGregor Parrott JEPJ, Zeitler JA, Gladden LF et al (2010) Tuning the acid/base properties of nanocarbons by functionalization via amination. J Am Chem Soc 132:9616–9630

    Article  Google Scholar 

  18. Tessonnier JP, Villa A, Majoulet O, Su DS, Schlogl R (2009) Defect-mediated functionalization of carbon nanotubes as a route to design single-site basic heterogeneous catalysts for biomass conversion. Angew Chem Int Ed 48:6543–6546

    Article  Google Scholar 

  19. Van Dommele S, de Jong KP, Bitter JH (2009) Activity of nitrogen containing carbon nanotubes in base catalyzed Knoevenagel condensation. Top Catal 52:1575–1583

    Article  Google Scholar 

  20. Kouvetakis J, Bandari A, Todd M, Wilkens B, Cave N (1994) Novel synthetic routes to carbon-nitrogen thin films. Chem Mater 6:811–814

    Article  Google Scholar 

  21. Thomas A, Fischer A, Goettmann F, Antonietti M, Müller JO, Schlögl R, Carlsson JM (2008) Graphitic carbon nitride materials: variation of structure and morphology and their use as metal-free catalysts. J Mater Chem 18:4893–4908

    Article  Google Scholar 

  22. Wirnhier E, Döblinger M, Gunzelmann D, Senker J, Lotsch BV, Schnick W (2011) Poly (triazine imide) with intercalation of lithium and chloride ions [(C3N3)2 (NHxLi1−x)3·LiCl]: a crystalline 2D carbon nitride network. Chem Eur J 17:3213–3221

    Article  Google Scholar 

  23. Wang X, Chen X, Thomas A, Fu X, Antonietti M (2009) Metal-containing carbon nitride compounds: a new functional organic–metal hybrid material. Adv Mater 21:1609–1612

    Article  Google Scholar 

  24. Kroke E, Schwarz M, Horath-Bordon E, Kroll P, Noll B, Norman AD (2002) Tri-s-triazine derivatives. Part I. from trichloro-tri-s-triazine to graphitic C3N4 structures. New J Chem 26:508–512

    Article  Google Scholar 

  25. Yu JI, Shiau SY, Ko AN (2001) Al-MCM-41 supported magnesium oxide as catalyst for synthesis of α-pentylcinnamaldehyde. Catal Lett 77:165–169

    Article  Google Scholar 

  26. Jaenicke S, Chuah GK, Lin XH, Hu XC (2000) Organic–inorganic hybrid catalysts for acid-and base-catalyzed reactions. Microporous Mesoporous Mater 35–36:143–153

    Article  Google Scholar 

  27. Barth JO, Jentys A, Kornatowski J, Lercher JA (2004) Control of acid–base properties of new nanocomposite derivatives of MCM-36 by mixed oxide pillaring. Chem Mater 16:724–730

    Article  Google Scholar 

  28. Li QC, Brown SE, Broadbelt LJ, Zheng JG, Wu NQ (2003) Synthesis and characterization of MCM-41-supported Ba2SiO4 base catalyst. Microporous Mesoporous Mater 59:105–111

    Article  Google Scholar 

  29. Wei YL, Cao Y, Zhu JH, Yan XW (2003) Investigation on new mesoporous solid basic material MgO/SBA-15. Chin J Inorg Chem 19:233–239

    Google Scholar 

  30. Vinu A (2008) Two-dimensional hexagonally-ordered mesoporous carbon nitrides with tunable pore diameter, surface area and nitrogen content. Adv Funct Mater 18:816–827

    Article  Google Scholar 

  31. Wang XC, Maeda K, Thomas A, Takanabe K, Xin G, Carlsson JM, Domen K, Antonietti M (2009) A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat Chem 8:76–80

    Google Scholar 

  32. Zhang ZY, Huang JD, Yuan Q, Dong B (2014) Intercalated graphitic carbon nitride: a fascinating two-dimensional nanomaterial for an ultra-sensitive humidity nanosensor. Nanoscale 6:9250–9256

    Article  Google Scholar 

  33. Schaber PM, Colson J, Higgins S, Thielen D (2004) Thermal decomposition (pyrolysis) of urea in an open reaction vessel. Thermochim Acta 424:131–142

    Article  Google Scholar 

  34. Xu JY, Li YX, Peng SQ, Lu GX, Li SB (2013) Eosin Y-sensitized graphitic carbon nitride fabricated by heating urea for visible light photocatalytic hydrogen evolution: the effect of the pyrolysis temperature of urea. Phys Chem Chem Phys 15:7657–7665

    Article  Google Scholar 

  35. Xu XX, Liu G, Randorn C, Irvine JTS (2011) g-C3N4 coated SrTiO3 as an efficient photocatalyst for H2 production in aqueous solution under visible light irradiation. Int J Hydrogen Energy 36:13501–13507

    Article  Google Scholar 

  36. Shi L, Liang L, Wang FX, Ma J, Sun JM (2014) Polycondensation of guanidine hydrochloride into a graphitic carbon nitride semiconductor with a large surface area as a visible light photocatalyst. Catal Sci Technol 4:3235–3243

    Article  Google Scholar 

  37. Zhang YW, Liu JH, Wu G, Chen W (2012) Porous graphitic carbon nitride synthesized via direct polymerization of urea for efficient sunlight-driven photocatalytic hydrogen production. Nanoscale 4:5300–5303

    Article  Google Scholar 

  38. Hu SZ, Jin RR, Lu G, Liu D, Gui JZ (2014) The properties and photocatalytic performance comparison of Fe3+-doped g-C3N4 and Fe2O3/g-C3N4 composite catalysts. RSC Adv 4:24863–24869

    Article  Google Scholar 

  39. Yan SC, Li ZS, Zou ZG (2009) Photodegradation performance of g-C3N4 fabricated by directly heating melamine. Langmuir 25:10397–10401

    Article  Google Scholar 

  40. Liu JH, Zhang TK, Wang ZC, Dawson G, Chen W (2011) Simple pyrolysis of urea into graphitic carbon nitride with recyclable adsorption and photocatalytic activity. J Mater Chem 21:14398–14401

    Article  Google Scholar 

  41. Cui YJ, Huang JH, Fu XZ, Wang XC (2012) Metal-free photocatalytic degradation of 4-chlorophenol in water by mesoporous carbon nitride semiconductors. Catal Sci Technol 2:1396–1402

    Article  Google Scholar 

  42. Vinu A, Ariga K, Mori T, Nakanishi T, Hishita S, Golberg D, Bando Y (2005) Preparation and characterization of well-ordered hexagonal mesoporous carbon nitride. Adv Mater 17:1648–1652

    Article  Google Scholar 

  43. Yamada Yasuhiro, Kim Jungpil, Matsuo Shintaro, Sato Satoshi (2014) Nitrogen-containing graphene analyzed by X-ray photoelectron spectroscopy. Carbon 70:59–74

    Article  Google Scholar 

  44. Han Q, Zhao F, Hu CG, Lv LX, Zhang ZP, Chen N, Qu LT (2015) Facile production of ultrathin graphitic carbon nitride nanoplatelets for efficient visible-light water splitting. Nano Res 8:1718–1728

    Article  Google Scholar 

  45. Zhang GG, Huang CJ, Wang XC (2015) Dispersing molecular cobalt in graphitic carbon nitride frameworks for photocatalytic water oxidation. Small 11:1215–1221

    Article  Google Scholar 

  46. Zhang GG, Zhang JS, Zhang MW, Wang XC (2012) Polycondensation of thiourea into carbon nitride semiconductors as visible light photocatalysts. J Mater Chem 22:8083–8091

    Article  Google Scholar 

  47. Singh VP, Rath C (2015) Passivation of native defects of ZnO by doping Mg detected through various spectroscopic techniques. RSC Adv 5:44390–44397

    Article  Google Scholar 

  48. Talapaneni SN, Anandan S, Mane GP, Anand C, Dhawale DS, Varghese S, Mano A, Mori T et al (2012) Facile synthesis and basic catalytic application of 3D mesoporous carbon nitride with a controllable bimodal distribution. J Mater Chem 22:9831–9840

    Article  Google Scholar 

  49. Xu S, Zeng HY, Cheng CR, Duan HZ, Han J, Ding PX, Xiao GF (2015) Mg–Fe mixed oxides as solid base catalysts for the transesterification of microalgae oil. RSC Adv 5:71278–71286

    Article  Google Scholar 

  50. Wang T, Wu GJ, Guan NJ, Li LD (2012) Nitridation of MgO-loaded MCM-41 and its beneficial applications in base-catalyzed reactions. Microporous and Mesoporous Mater 148:184–190

    Article  Google Scholar 

  51. Zhang WF, Liang JH, Liu YQ, Sun SF, Ren XQ, Jiang M (2013) Knoevenagel condensation reaction over acid-base bifunctional MgO/HMCM-22 catalysts. Chin J Catal 34:559–566

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the program for Yong Teachers Scientific Research in Qiqihar University (No. 2014k-Z10).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingfang Deng.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 116 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, Q., Li, Q. Facile preparation of Mg-doped graphitic carbon nitride composites as a solid base catalyst for Knoevenagel condensations. J Mater Sci 53, 506–515 (2018). https://doi.org/10.1007/s10853-017-1534-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1534-3

Keywords

Navigation