Skip to main content

Advertisement

Log in

Design of Enhanced Smart Delivery Systems for Therapeutic Enzymes: Kinetic and Release Performance of Dual Effected Enzyme-Loaded Nanopolymers

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

L-asparaginase (L-ASNase) is among the important biopharmaceuticals and is utilized in the treatment of acute lymphoblastic. L-ASNase catalyzes its conversion to aspartic acid and ammonia. The use of enzymes loaded on polymeric systems is an alternative way to avoid the stability problem when using enzymes. In addition, drug release applications that can be obtained with loaded enzymes can be very useful, especially in both pharmaceutical and medical implementations, as they can canalize the enzyme to the right site. For this purpose, L-asparaginase loaded smart nanopolymers (ASN-SNPs) were synthesized via miniemulsion process. The SEM, FTIR characterizations and, zeta potential of ASN-SNPs were carried out. ASN-SNPs showed improvement in free enzyme related stability under extreme conditions. On the other hand, the storage stability and reusability of theASN-SNPs were found to be about 63 and 53% of the original activity after 4 weeks days at room temperature and 10 cycles, respectively. The Michaelis–Menten constants (Km) of 6.595 and 1.902 mM, and the maximum reaction rates (Vmax) of 212.766 and 49.02 μM min−1 were founded for free and loaded L-ASNase, respectively. The results showed that the designed L-asparaginase loaded SNPs are a promising matrix for their high catalytic efficiency and enhanced stability properties.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  1. Patel PG, Panseriya HZ, Vala AK, Dave BP, Gosai HB (2022) Process Biochem 121:529

    Article  CAS  Google Scholar 

  2. Noma SAA, Ulu A, Acet Ö, Sanz R, Sanz-Pérez ES, Odabaşi M, Ateş B (2020). New J Chem. https://doi.org/10.1039/d0nj00127a

    Article  Google Scholar 

  3. Ali Noma SA, Acet Ö, Ulu A, Önal B, Odabaşı M, Ateş B (2021) Polym Test 93:106980

    Article  CAS  Google Scholar 

  4. Acet Ö, Aksoy NH, Erdönmez D, Odabaşı M (2018) Artif Cells Nanomed Biotechnol 46:538

    Article  Google Scholar 

  5. Acet Ö, İnanan T, Acet BÖ, Dikici E, Odabaşı M (2021) Appl Biochem Biotechnol 193:2483

    Article  CAS  PubMed  Google Scholar 

  6. Rabanel J-M, Banquy X, Zouaoui H, Mokhtar M, Hildgen P (2009) Biotechnol Prog 25:946

    Article  CAS  PubMed  Google Scholar 

  7. Mohamad NR, Marzuki NHC, Buang NA, Huyop F, Wahab RA (2015) Biotechnol Biotechnol Equip 29:205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Tran DN, Balkus KJ (2011) ACS Catal 1:956

    Article  CAS  Google Scholar 

  9. da Pereira AS, Souza CPL, Moraes L, Fontes-Sant’Ana GC, Amaral PFF (2021) Polymers (Basel) 13:4061

    Article  Google Scholar 

  10. Yıldırım M, Acet Ö, Yetkin D, Acet BÖ, Karakoc V, Odabası M (2022) J Drug Deliv Sci Technol 74:103552

    Article  Google Scholar 

  11. Eon-Duval A, Broly H, Gleixner R (2012) Biotechnol Prog 28:608

    Article  CAS  PubMed  Google Scholar 

  12. Colombo S, Beck-Broichsitter M, Bøtker JP, Malmsten M, Rantanen J, Bohr A (2018) Adv Drug Deliv Rev 128:115

    Article  CAS  PubMed  Google Scholar 

  13. Brumano LP, da Silva FVS, Costa-Silva TA, Apolinário AC, Santos JHPM, Kleingesinds EK, Monteiro G, de Rangel-Yagui CO, Benyahia B, Junior AP (2019). Front Bioeng Biotechnol. https://doi.org/10.3389/fbioe.2018.00212

    Article  PubMed  PubMed Central  Google Scholar 

  14. Guragain S, Bastakoti BP, Malgras V, Nakashima K, Yamauchi Y (2015) Chem Eur J 21:13164

    Article  CAS  PubMed  Google Scholar 

  15. Cheng R, Meng F, Deng C, Klok H-A, Zhong Z (2013) Biomaterials 34:3647

    Article  CAS  PubMed  Google Scholar 

  16. Wu M, Li J, Lin X, Wei Z, Zhang D, Zhao B, Liu X, Liu J (2018) Biomater Sci 6:1457

    Article  CAS  PubMed  Google Scholar 

  17. Chung JE, Yokoyama M, Yamato M, Aoyagi T, Sakurai Y, Okano T (1999) J Control Release 62:115

    Article  CAS  PubMed  Google Scholar 

  18. Talelli M, Hennink WE (2011) Nanomedicine 6:1245

    Article  CAS  PubMed  Google Scholar 

  19. Yan H, Tsujii K (2005) Colloids Surf B 46:142

    Article  CAS  Google Scholar 

  20. Piloni A, Cao C, Garvey CJ, Walther A, Stenzel MH (2019) Macromol Chem Phys 220:1900131

    Article  CAS  Google Scholar 

  21. Asayama S, Sekine T, Kawakami H, Nagaoka S (2007) Nucleic Acids Symp Ser 51:333

    Article  Google Scholar 

  22. Li Z, Gao Y, Li W, Li Y, Lv H, Zhang D, Peng J, Cheng W, Mei L, Chen H, Zeng X (2022) Smart Mater Med 3:243

    Article  Google Scholar 

  23. Li Z, Shan X, Chen Z, Gao N, Zeng W, Zeng X, Mei L (2021) Adv Sci 8:2002589

    Article  CAS  Google Scholar 

  24. Acet Ö, Ali Noma SA, Acet BÖ, Dikici E, Osman B, Odabaşı M (2023) J Pharm Biomed Anal 226:115250

    Article  CAS  PubMed  Google Scholar 

  25. Ulu A, Noma SAA, Koytepe S, Ates B (2019) Appl Biochem Biotechnol 187:938

    Article  CAS  PubMed  Google Scholar 

  26. Imada A, Igarasi S, Nakahama K, Isono M (1973) J Gen Microbiol 76:85

    Article  CAS  PubMed  Google Scholar 

  27. Bernfield M, Götte M, Park PW, Reizes O, Fitzgerald ML, Lincecum J, Zako M (1999) Annu Rev Biochem 68:729

    Article  CAS  PubMed  Google Scholar 

  28. Honary S, Zahir F (2013). Trop J Pharm Res. https://doi.org/10.4314/tjpr.v12i2.19

    Article  Google Scholar 

  29. Cafaggi S, Russo E, Stefani R, Leardi R, Caviglioli G, Parodi B, Bignardi G, de Totero D, Aiello C, Viale M (2007) J Control Release 121:110

    Article  CAS  PubMed  Google Scholar 

  30. Yang R, Yang S-G, Shim W-S, Cui F, Cheng G, Kim I-W, Kim D-D, Chung S-J, Shim C-K (2009) J Pharm Sci 98:970

    Article  CAS  PubMed  Google Scholar 

  31. Noma SAA, Ulu A, Koytepe S, Ateş B (2020) Biocatal Biotransform 38:392

    Article  CAS  Google Scholar 

  32. Noma SAA, Yılmaz BS, Ulu A, Özdemir N, Ateş B (2021) Catal Lett 151:1191

    Article  CAS  Google Scholar 

  33. Gawande PV, Kamat MY (1998) J Biotechnol 66:165

    Article  CAS  PubMed  Google Scholar 

  34. Monajati M, Borandeh S, Hesami A, Mansouri D, Tamaddon AM (2018) Chem Eng J 354:1153

    Article  CAS  Google Scholar 

  35. Alam S, Nagpal T, Singhal R, Kumar Khare S (2021) Bioresour Technol 339:125599

    Article  CAS  PubMed  Google Scholar 

  36. Ulu A, Noma SAA, Koytepe S, Ates B (2018) Artif Cells Nanomed Biotechnol 46:1035

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

ÖA: Investigation, Conceptualization, Writing—Review & Editing.

Corresponding author

Correspondence to Ömür Acet.

Ethics declarations

Conflicts of interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Acet, Ö. Design of Enhanced Smart Delivery Systems for Therapeutic Enzymes: Kinetic and Release Performance of Dual Effected Enzyme-Loaded Nanopolymers. Catal Lett 153, 3174–3184 (2023). https://doi.org/10.1007/s10562-023-04418-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-023-04418-8

Keywords

Navigation