Skip to main content

Advertisement

Log in

Catalytic Hydrogen Production from Formaldehyde over Immobilized Ruthenium Complexes

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Formaldehyde is an important industrial chemical. Recently, it become an alternative material for hydrogen production since the development of hydrogen energy. Formaldehyde exists as methanediol in water, and could decompose into hydrogen under low temperature. Ruthenium complex is a homogeneous catalyst which has high activity and selectivity for formaldehyde decomposition. But a common problem is that it is difficult to be recycled from solution. In this research, we prepared a novel 2D covalent triazine framework (CTF) for Ru(p-Cymene)Cl2 immobilization, and obtained the heterogeneous catalyst for formaldehyde decomposition. We found the mole ratio of H2 to CO2 is not 2 during formaldehyde decomposition, which is inconsistent with the chemical equation (HCHO + H2O = 2 H2 + CO2). The mole ratio decreases continuously, even below 2. It indicates the formaldehyde decomposition is not a one-step process over the immobilized ruthenium. Firstly, hydrogen and formic acid were produced through formaldehyde-water shift reaction. Thus, there’s not enough carbon dioxide could be detected at the beginning of formaldehyde decomposition. The TOF achieves to 1650 h−1 in this process at 90 °C. Then, formic acid could further decompose into hydrogen and carbon dioxide. A significant ruthenium hydride was detected by FTIR during formaldehyde decomposition, which plays an important role in both formaldehyde-water shift reaction and formic acid decomposition. This work proposed a novel method for organometallic immobilization and hydrogen production from formaldehyde decomposition.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Sutherland JD (2016) The origin of life—out of the blue. Angew Chem Int Ed 55:104–121

    Article  CAS  Google Scholar 

  2. Heim LE, Schlörer NE, Choi J-H, Prechtl MHG (2014) Selective and mild hydrogen production using water and formaldehyde. Nat Commun 5:3621

    Article  ADS  PubMed  Google Scholar 

  3. Trincado M, Sinha V, Rodriguez-Lugo RE, Pribanic B, de Bruin B, Grützmacher H (2017) Homogeneously catalysed conversion of aqueous formaldehyde to H2 and carbonate. Nat Commun 8:14990

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  4. Chen R, Sun Z, Hardacre C, Tang X, Liu Z (2022) The current status of research on the catalytic oxidation of formaldehyde. Catalysis Rev. https://doi.org/10.1080/01614940.2022.2107785

    Article  Google Scholar 

  5. Hu H, Jiao Z, Ye J, Lu G, Bi Y (2014) Highly efficient hydrogen production from alkaline aldehyde solutions facilitated by palladium nanotubes. Nano Energy 8:103–109

    Article  CAS  Google Scholar 

  6. Wang W, Li G, An T, Chan DKL, Yu JC, Wong PK (2018) Photocatalytic hydrogen evolution and bacterial inactivation utilizing sonochemical-synthesized g-C3N4/red phosphorus hybrid nanosheets as a wide-spectral-responsive photocatalyst: The role of type I band alignment. Appl Catal B 238:126–135

    Article  CAS  Google Scholar 

  7. Wang W, An T, Li G, Xia D, Zhao H, Yu JC, Wong PK (2017) Earth-abundant Ni2P/g-C3N4 lamellar nanohydrids for enhanced photocatalytic hydrogen evolution and bacterial inactivation under visible light irradiation. Appl Catal B 217:570–580

    Article  CAS  Google Scholar 

  8. Ding J, Chen J, Rui Z, Liu Y, Lv P, Liu X, Li H, Ji H (2018) Synchronous pore structure and surface hydroxyl groups amelioration as an efficient route for promoting HCHO oxidation over Pt/ZSM-5. Catal Today 316:107–113

    Article  CAS  Google Scholar 

  9. Kosco J, Gonzalez-Carrero S, Howells CT, Fei T, Dong Y, Sougrat R, Harrison GT, Firdaus Y, Sheelamanthula R, Purushothaman B, Moruzzi F, Xu W, Zhao L, Basu A, De Wolf S, Anthopoulos TD, Durrant JR, McCulloch I (2022) Generation of long-lived charges in organic semiconductor heterojunction nanoparticles for efficient photocatalytic hydrogen evolution. Nat Energy 7:340–351

    Article  ADS  CAS  Google Scholar 

  10. Zhou Q, Shen Z, Zhu C, Li J, Ding Z, Wang P, Pan F, Zhang Z, Ma H, Wang S, Zhang H (2018) Nitrogen-doped CoP electrocatalysts for coupled hydrogen evolution and sulfur generation with low energy consumption. Adv Mater 30:1800140

    Article  Google Scholar 

  11. Qu J, Chen D, Li N, Xu Q, Li H, He J, Lu J (2019) 3D gold-modified cerium and cobalt oxide catalyst on a graphene aerogel for highly efficient catalytic formaldehyde oxidation. Small 15:1804415

    Article  Google Scholar 

  12. Fang R, Feng Q, Huang H, Ji J, He M, Zhan Y, Liu B, Leung DYC (2019) Effect of K+ ions on efficient room-temperature degradation of formaldehyde over MnO2 catalysts. Catal Today 327:154–160

    Article  CAS  Google Scholar 

  13. Deng J, Song W, Chen L, Wang L, Jing M, Ren Y, Zhao Z, Liu J (2019) The effect of oxygen vacancies and water on HCHO catalytic oxidation over Co3O4 catalyst: a combination of density functional theory and microkinetic study. Chem Eng J 355:540–550

    Article  CAS  Google Scholar 

  14. Chen J, Jiang M, Xu W, Chen J, Hong Z, Jia H (2019) Incorporating Mn cation as anchor to atomically disperse Pt on TiO2 for low-temperature removal of formaldehyde. Appl Catal B 259:118013

    Article  CAS  Google Scholar 

  15. Wang X, Rui Z, Ji H (2020) DFT study of formaldehyde oxidation on silver cluster by active oxygen and hydroxyl groups: mechanism comparison and synergistic effect. Catal Today 347:124–133

    Article  CAS  Google Scholar 

  16. Li S, Xu Y, Chen Y, Li W, Lin L, Li M, Deng Y, Wang X, Ge B, Yang C, Yao S, Xie J, Li Y, Liu X, Ma D (2017) Tuning the selectivity of catalytic carbon dioxide hydrogenation over iridium/cerium oxide catalysts with a strong metal-support interaction. Angew Chem Int Ed 56:10761–10765

    Article  CAS  Google Scholar 

  17. Marimuthu A, Zhang J, Linic S (2013) Tuning selectivity in propylene epoxidation by plasmon mediated photo-switching of cu oxidation state. Science 339:1590–1593

    Article  ADS  CAS  PubMed  Google Scholar 

  18. Heim LE, Konnerth H, Prechtl MHG (2017) Future perspectives for formaldehyde: pathways for reductive synthesis and energy storage. Green Chem 19:2347–2355

    Article  CAS  Google Scholar 

  19. Li R, Zhu X, Yan X, Kobayashi H, Yoshida S, Chen W, Du L, Qian K, Wu B, Zou S, Lu L, Yi W, Zhou Y, Fan J (2017) Oxygen-controlled hydrogen evolution reaction: molecular oxygen promotes hydrogen production from formaldehyde solution using Ag/MgO nanocatalyst. ACS Catal 7:1478–1484

    Article  CAS  Google Scholar 

  20. Du L, Qian K, Zhu X, Yan X, Kobayashi H, Liu Z, Lou Y, Li R (2019) Interface engineering of palladium and zinc oxide nanorods with strong metal–support interactions for enhanced hydrogen production from base-free formaldehyde solution. J Mater Chem A 7:8855–8864

    Article  CAS  Google Scholar 

  21. Feng S, Song X, Liu Y, Lin X, Yan L, Liu S, Dong W, Yang X, Jiang Z, Ding Y (2019) In situ formation of mononuclear complexes by reaction-induced atomic dispersion of supported noble metal nanoparticles. Nat Commun 10:5281

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  22. Baleizão C, Garcia H (2006) Chiral salen complexes: an overview to recoverable and reusable homogeneous and heterogeneous catalysts. Chem Rev 106:3987–4043

    Article  PubMed  Google Scholar 

  23. Kumar A, Daw P, Milstein D (2022) Homogeneous catalysis for sustainable energy: hydrogen and methanol economies, fuels from biomass, and related topics. Chem Rev 122:385–441

    Article  CAS  PubMed  Google Scholar 

  24. Wang Z, Chen G, Ding K (2009) Self-supported catalysts. Chem Rev 109:322–359

    Article  CAS  PubMed  Google Scholar 

  25. Slater AG, Cooper AI (2015) Function-led design of new porous materials. Science 348:aaa8075

    Article  PubMed  Google Scholar 

  26. Pascanu V, González Miera G, Inge AK, Martín-Matute B (2019) Metal-organic frameworks as catalysts for organic synthesis: a critical perspective. J Am Chem Soc 141:7223–7234

    Article  CAS  PubMed  Google Scholar 

  27. Shen Y, Zheng Q, Zhu H, Tu T (2020) Hierarchical porous organometallic polymers fabricated by direct knitting: recyclable single-site catalysts with enhanced activity. Adv Mater 32:1905950

    Article  CAS  Google Scholar 

  28. Wu JL, Xu F, Li SM, Ma PW, Zhang XC, Liu QH, Fu RW, Wu DC (2019) Porous polymers as multifunctional material platforms toward task-specific applications. Adv Mater. https://doi.org/10.1002/adma.201802922

    Article  PubMed  PubMed Central  Google Scholar 

  29. Wang D, Li S, Wu C, Li T (2022) Surface-seal encapsulation of a homogeneous catalyst in a mesoporous metal-organic framework. J Am Chem Soc 144:685–689

    Article  CAS  PubMed  Google Scholar 

  30. Doddi A, Peters M, Tamm M (2019) N-heterocyclic carbene adducts of main group elements and their use as ligands in transition metal chemistry. Chem Rev 119:6994–7112

    Article  CAS  PubMed  Google Scholar 

  31. Liang S, Chen S, Guo Z, Lan Z, Kobayashi H, Yan X, Li R (2019) In situ generated electron-deficient metallic copper as the catalytically active site for enhanced hydrogen production from alkaline formaldehyde solution. Catal Sci Technol 9:5292–5300

    Article  CAS  Google Scholar 

  32. Shen Y, Ning F, Bai C, Zhan Y, Li S, Huang Y, Zhou X (2018) Hydrogen generation from s-trioxane and water catalytic reforming: a solid organic hydrogen carrier. Acs Applied Energy Materials 1:4860–4866

    Article  CAS  Google Scholar 

  33. Shen Y, Xu Y, Zhang T, Zhan Y, Guo C (2022) Water-induced gaseous formaldehyde decomposition using ruthenium organic crystalline. Catalysis Sci Technol. https://doi.org/10.1039/D2CY01636B

    Article  Google Scholar 

  34. Liu Q, Wang Y, Wen M, Guo Y, Wei Y, Li G, An T (2022) Catalytic oxidation of formaldehyde over a Au@Co3O4 nanocomposite catalyst enhanced by visible light: moisture indispensability and reaction mechanism. Environ Sci: Nano 9(11):4162–4176

    CAS  Google Scholar 

  35. Treigerman Z, Sasson Y (2017) Further observations on the mechanism of formic acid decomposition by homogeneous ruthenium catalyst. ChemistrySelect 2:5816–5823

    Article  CAS  Google Scholar 

  36. Bulushev DA (2021) Progress in catalytic hydrogen production from formic acid over supported metal complexes. Energies 14:1334

    Article  CAS  Google Scholar 

  37. Johnson TC, Morris DJ, Wills M (2010) Hydrogen generation from formic acid and alcohols using homogeneous catalysts. Chem Soc Rev 39:81–88

    Article  CAS  PubMed  Google Scholar 

  38. Heim LE, Schloerer NE, Choi JH, Prechtl MHG (2014) Selective and mild hydrogen production using water and formaldehyde. Nat Commun. https://doi.org/10.1038/ncomms4621

    Article  PubMed  Google Scholar 

  39. Loges B, Boddien A, Junge H, Beller M (2008) Controlled generation of hydrogen from formic acid amine adducts at room temperature and application in H-2/O-2 fuel cells. Angewandte Chemie-Int Edition 47:3962–3965

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful for financial support granted by the National Natural Science Foundation of China (No. 21902115), China Postdoctoral Science Foundation (No. 2018M632406).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yulu Zhan or Yangbin Shen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4683 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhan, Y., Zhou, S., Xu, Y. et al. Catalytic Hydrogen Production from Formaldehyde over Immobilized Ruthenium Complexes. Catal Lett 154, 808–815 (2024). https://doi.org/10.1007/s10562-023-04349-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-023-04349-4

Keywords

Navigation